ֱ̽ of Cambridge - European Space Agency /taxonomy/external-affiliations/european-space-agency en Last starlight for ground-breaking Gaia /research/news/last-starlight-for-ground-breaking-gaia <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/milkyway-25j14-40kpc-edge-10k-copy.jpg?itok=rXUrmwNh" alt="This is a new artist’s impression of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope. " title="This is a new artist’s impression of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope. , Credit: ESA/Gaia/DPAC, Stefan Payne-Wardenaar" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Launched on 19 December 2013, Gaia’s fuel tank is now approaching empty – it uses about a dozen grams of cold gas per day to keep it spinning with pinpoint precision. But this is far from the end of the mission. Technology tests are scheduled for the weeks ahead before <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia">Gaia</a> is moved to its ‘retirement’ orbit, and two massive data releases are tabled for around 2026 and the end of this decade, respectively.</p> <p>“Today marks the end of science observations and we are celebrating this <a href="/subjects/gaia">incredible mission that has exceeded all our expectations</a>, lasting for almost twice its originally foreseen lifetime,” said ESA Director of Science Carole Mundell.</p> <p>“ ֱ̽treasure trove of data collected by Gaia has given us unique insights into the origin and evolution of our Milky Way galaxy, and has also transformed astrophysics and Solar System science in ways that we are yet to fully appreciate. Gaia built on unique European excellence in astrometry and will leave a long-lasting legacy for future generations.”</p> <p>“Today marks the last day of science data collection from Gaia, these observations to form part of the final data release,” said Dr Nicholas Walton from Cambridge’s Institute of Astronomy, lead of the UK Gaia Project team and ESA Gaia Science Team member. “Our Gaia team in the UK is now working hard on the incredibly complex data analysis for the upcoming Gaia data releases. These will enable a wealth of new discovery, adding to the science from one of the world’s most productive science discovery machines.”</p> <p><iframe allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen="" frameborder="0" height="315" referrerpolicy="strict-origin-when-cross-origin" src="https://www.youtube.com/embed/5001PDif9nI?si=1T0FWJqvhwVyzZTn" title="YouTube video player" width="560"></iframe></p> <p><strong>Gaia delivers best Milky Way map</strong><br /> <br /> Gaia has been charting the positions, distances, movements, brightness changes, composition and numerous other characteristics of stars by monitoring them with its three instruments many times throughout the mission.</p> <p>This has enabled Gaia to deliver on its primary goal of building the largest, most precise map of the Milky Way, showing us our home galaxy like no other mission has done before.</p> <p>Gaia’s repeated measurements of stellar distances, motions and characteristics are key to performing ‘galactic archeology’ on our Milky Way, revealing missing links in our galaxy’s complex history to help us learn more about our origins. From detecting ‘ghosts’ of other galaxies and multiple streams of ancient stars that merged with the Milky Way in its early history, to finding evidence for an ongoing collision with the Sagittarius dwarf galaxy today, Gaia is rewriting the Milky Way’s history and making predictions about its future.</p> <p><strong>Warning! More ground-breaking science ahead</strong></p> <p> ֱ̽Gaia scientific and engineering teams are already working on the preparations for Gaia Data Release 4 (DR4), expected in 2026.</p> <p>“This is the Gaia release the community has been waiting for, and it’s exciting to think this only covers half of the collected data,” said Antonella Vallenari, Deputy Chair of DPAC based at the Istituto Nazionale di Astrofisica (INAF), Astronomical Observatory of Padua, Italy. “Even though the mission has now stopped collecting data, it will be business as usual for us for many years to come as we make these incredible datasets ready for use.”</p> <p>“Over the next months we will continue to downlink every last drop of data from Gaia, and at the same time the processing teams will ramp up their preparations for the fifth and final major data release at the end of this decade, covering the full 10.5 years of mission data,” said Rocio Guerra, Gaia Science Operations Team Leader based at ESA’s European Space Astronomy Centre (ESAC) near Madrid in Spain.</p> <p><strong>Gaia’s retirement plan</strong></p> <p>While today marks the end of science observations, a short period of technology testing now begins. ֱ̽tests have the potential to further improve the Gaia calibrations, learn more about the behaviour of certain technology after ten years in space, and even aid the design of future space missions.</p> <p>After several weeks of testing, Gaia will leave its current orbit around Lagrange point 2, 1.5 million km from the Earth in the direction away from the Sun, to be put into its final heliocentric orbit, far away from Earth’s sphere of influence. ֱ̽spacecraft will be passivated on 27 March 2025, to avoid any harm or interference with other spacecraft.</p> <p><strong>Wave farewell to Gaia</strong></p> <p>During the technology tests Gaia’s orientation will be changed, meaning it will temporarily become several magnitudes brighter, making observations through small telescopes a lot easier (it won’t be visible to the naked eye). <a href="https://www.cosmos.esa.int/web/gaia/observe-gaia">A guide to locating Gaia has been set up here</a>, and amateur astronomers are invited to share their observations.</p> <p>“Gaia will treat us with this final gift as we bid farewell, shining among the stars ahead of its well-earned retirement,” said Uwe Lammers, Gaia Mission Manager.</p> <p>“It’s a moment to celebrate this transformative mission and thank all of the teams for more than a decade of hard work operating Gaia, planning its observations, and ensuring its precious data are returned smoothly to Earth.”</p> <p><em>Adapted from a European Space Agency <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia/Last_starlight_for_ground-breaking_Gaia">press release</a>. </em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p> ֱ̽European Space Agency’s Milky Way-mapper Gaia has completed the sky-scanning phase of its mission, racking up more than three trillion observations of about two billion stars and other objects over the last decade to revolutionise the view of our home galaxy and cosmic neighbourhood.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia/Last_starlight_for_ground-breaking_Gaia" target="_blank">ESA/Gaia/DPAC, Stefan Payne-Wardenaar</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">This is a new artist’s impression of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope. </div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution-sharealike">Attribution-ShareAlike</a></div></div></div> Wed, 15 Jan 2025 09:22:32 +0000 Anonymous 248643 at Webb detects most distant black hole merger to date /research/news/webb-detects-most-distant-black-hole-merger-to-date <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/zs7-environment-nircam-image-cr.jpg?itok=oxIqgLKf" alt=" ֱ̽environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb&#039;s NIRCam instrument." title=" ֱ̽environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb&amp;#039;s NIRCam instrument, Credit: ESA/Webb, NASA, CSA, J. Dunlop, H. Übler, R. Maiolino, et. al" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Astronomers have found supermassive black holes with masses of millions to billions times that of the Sun in most massive galaxies in the local Universe, including in our Milky Way galaxy. These black holes have likely had a major impact on the evolution of the galaxies they reside in. However, scientists still don’t fully understand how these objects grew to become so massive.</p> <p> ֱ̽finding of gargantuan black holes already in place in the first billion years after the Big Bang indicates that such growth must have happened very rapidly, and very early. Now, the James Webb Space Telescope is shedding new light on the growth of black holes in the early Universe.</p> <p> ֱ̽new Webb observations have provided evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was just 740 million years old. ֱ̽system is known as ZS7.</p> <p>Massive black holes that are actively accreting matter have distinctive spectrographic features that allow astronomers to identify them. For very distant galaxies, like those in this study, these signatures are inaccessible from the ground and can only be seen with Webb.</p> <p>“We found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes,” said lead author Dr Hannah Übler of Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology. “Thanks to the unprecedented sharpness of its imaging capabilities, Webb also allowed our team to spatially separate the two black holes.”</p> <p> ֱ̽team found that one of the two black holes has a mass that is 50 million times the mass of the Sun. “ ֱ̽mass of the other black hole is likely similar, although it is much harder to measure because this second black hole is buried in dense gas,” said team member Professor Roberto Maiolino, also from the Kavli Institute.</p> <p>“Our findings suggest that merging is an important route through which black holes can rapidly grow, even at cosmic dawn,” said Übler. “Together with other Webb findings of active, massive black holes in the distant Universe, our results also show that massive black holes have been shaping the evolution of galaxies from the very beginning.”</p> <p> ֱ̽team notes that once the two black holes merge, they will also generate gravitational waves. Events like this will be detectable with the next generation of gravitational wave observatories, such as the upcoming Laser Interferometer Space Antenna (LISA) mission, which was recently approved by the European Space Agency and will be the first space-based observatory dedicated to studying gravitational waves.</p> <p>This discovery was from observations made as part of the Galaxy Assembly with NIRSpec Integral Field Spectroscopy programme. ֱ̽team has recently been awarded a new Large Programme in Webb’s Cycle 3 of observations, to study in detail the relationship between massive black holes and their host galaxies in the first billion years. An important component of this programme will be to systematically search for and characterise black hole mergers. This effort will determine the rate at which black hole merging occurs at early cosmic epochs and will assess the role of merging in the early growth of black holes and the rate at which gravitational waves are produced from the dawn of time.</p> <p>These <a href="https://academic.oup.com/mnras/article/531/1/355/7671512">results</a> have been published in the <em>Monthly Notices of the Royal Astronomical Society</em>.</p> <p><em><strong>Reference:</strong><br /> Hannah Übler et al. ‘<a href="https://academic.oup.com/mnras/article/531/1/355/7671512">GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang</a>’ Monthly Notices of the Royal Astronomical Society (2024). DOI: 10.1093/mnras/stae943</em></p> <p><em>Adapted from a <a href="https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_detects_most_distant_black_hole_merger_to_date">press release</a> by the European Space Agency.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>An international team of astronomers, led by the ֱ̽ of Cambridge, has used the James Webb Space Telescope to find evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">Massive black holes have been shaping the evolution of galaxies from the very beginning</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Hannah Übler</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_detects_most_distant_black_hole_merger_to_date" target="_blank">ESA/Webb, NASA, CSA, J. Dunlop, H. Übler, R. Maiolino, et. al</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even"> ֱ̽environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb&#039;s NIRCam instrument</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution">Attribution</a></div></div></div> Thu, 16 May 2024 17:34:22 +0000 sc604 246021 at Galaxy mergers solve early Universe mystery /research/news/galaxy-mergers-solve-early-universe-mystery <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/zooming-in-on-three-neighbouring-galaxies-nircam-image-dp.jpg?itok=Uymxjnwx" alt="This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms – Lyman-α emission. " title="Zooming in on three neighbouring galaxies (NIRCam image), Credit: ESA/Webb, NASA &amp;amp; CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. " /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>This has solved one of the most puzzling mysteries in astronomy – why astronomers detect light from hydrogen atoms that should have been entirely blocked by the pristine gas that formed after the Big Bang.</p> <p>These new observations have found small, faint objects surrounding the galaxies that show the ‘inexplicable’ hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission. ֱ̽<a href="https://www.nature.com/articles/s41550-023-02179-3">results</a> are reported in the journal <em>Nature Astronomy</em>.</p> <p>Light travels at a finite speed (300 000 km a second), which means that the further away a galaxy is, the longer it has taken the light from it to reach our Solar System. As a result, not only do observations of the most distant galaxies probe the far reaches of the Universe, but they also allow us to study the Universe as it was in the past.</p> <p>To study the early Universe, astronomers require exceptionally powerful telescopes that are capable of observing very distant – and therefore very faint – galaxies. One of <a href="https://www.esa.int/Science_Exploration/Space_Science/Webb">Webb’s</a> key capabilities is its ability to observe these galaxies, and probe the early history of the Universe.</p> <p> ֱ̽earliest galaxies were sites of vigorous and active star formation, and were rich sources of a type of light emitted by hydrogen atoms called Lyman-α emission. However, during the epoch of reionisation, an immense amount of neutral hydrogen gas surrounded these stellar nurseries. Furthermore, the space between galaxies was filled by more of this neutral gas than is the case today. ֱ̽gas can effectively absorb and scatter this kind of hydrogen emission, so astronomers have long predicted that the abundant Lyman-α emission released in the early Universe should not be observable today.</p> <p>This theory has not always stood up to scrutiny, however, as examples of early hydrogen emission have previously been observed by astronomers. This has presented a mystery: how is it that this hydrogen emission – which should have long since been absorbed or scattered – is being observed?</p> <p>“One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big Bang,” said lead author Callum Witten from Cambridge’s Institute of Astronomy. “Many hypotheses have previously been suggested to explain the great escape of this ‘inexplicable’ emission.”</p> <p> ֱ̽team’s breakthrough came thanks to Webb’s combination of angular resolution and sensitivity. ֱ̽observations with Webb’s NIRCam instrument were able to resolve smaller, fainter galaxies that surround the bright galaxies from which the ‘inexplicable’ hydrogen emission had been detected. In other words, the surroundings of these galaxies appear to be a much busier place than we previously thought, filled with small, faint galaxies.</p> <p>These smaller galaxies were interacting and merging with one another, and Webb has revealed that galaxy mergers play an important role in explaining the mystery emission from the earliest galaxies.</p> <p>“Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies,” said co-author Sergio Martin-Alvarez from Stanford ֱ̽.</p> <p> ֱ̽team then used computer simulations to explore the physical processes that might explain their results. They found that the rapid build-up of stellar mass through galaxy mergers both drove strong hydrogen emission and facilitated the escape of that radiation via channels cleared of the abundant neutral gas. So, the high merger rate of the previously unobserved smaller galaxies presented a compelling solution to the long-standing puzzle of the ‘inexplicable’ early hydrogen emission.</p> <p> ֱ̽team is planning follow-up observations with galaxies at various stages of merging, to continue to develop their understanding of how the hydrogen emission is ejected from these changing systems. Ultimately, this will enable them to improve our understanding of galaxy evolution.</p> <p><em><strong>Reference:</strong><br /> Callum Witten et al. ‘<a href="https://www.nature.com/articles/s41550-023-02179-3">Deciphering Lyman-α emission deep into the epoch of reionization</a>.’ Nature Astronomy (2024). DOI: 10.1038/s41550-023-02179-3</em></p> <p><em>Adapted from an <a href="https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_galaxy_mergers_solve_early_Universe_mystery">ESA press release</a>.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A team of astronomers, led by the ֱ̽ of Cambridge, has used the NASA/ESA/CSA James Webb Space Telescope to reveal, for the first time, what lies in the local environment of galaxies in the very early Universe.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/Science_Exploration/Space_Science/Webb/Webb_galaxy_mergers_solve_early_Universe_mystery" target="_blank">ESA/Webb, NASA &amp; CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. </a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Zooming in on three neighbouring galaxies (NIRCam image)</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 18 Jan 2024 16:28:39 +0000 sc604 244101 at Latest Gaia data release reveals rare lenses, cluster cores and unforeseen science /research/news/latest-gaia-data-release-reveals-rare-lenses-cluster-cores-and-unforeseen-science <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/gaia-fpr-sif-cf-omega-cen-zoom-1-2-dp.jpg?itok=0kdVIv-h" alt="Gaia view of Omega Centauri " title="Gaia view of Omega Centauri , Credit: ESA/Gaia/DPAC" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="/topics/Gaia">Gaia</a> is mapping our galaxy and beyond in multi-dimensional detail, completing the most accurate stellar census ever. ֱ̽mission is painting a detailed picture of our place in the Universe, enabling us to better understand the diverse objects within it.</p>&#13; &#13; <p> ֱ̽mission’s latest data release provides new and improved insights into the space around us. ֱ̽release also brings findings that go far beyond what Gaia was initially designed to discover and digs deep into our cosmic history.</p>&#13; &#13; <p>“This focused product data release will open up new insights across astronomy, from the precise orbits of asteroids in our Solar System, to quasar discovery in the distant cosmos,” said Dr Nicholas Walton from Cambridge’s Institute of Astronomy, lead of the UK Gaia Project team and ESA Gaia Science Team member. “It demonstrates the breadth of science enabled by Gaia, and the role of Cambridge and UK Gaia teams in the creation of these data products. This release represents but a small taste of the riches to be revealed with the publication of the next full release, Gaia DR4.”</p>&#13; &#13; <p>So – what’s new from Gaia?</p>&#13; &#13; <p><strong>Half a million new stars: Gaia's observing mode extended to unlock cluster cores</strong></p>&#13; &#13; <p><a href="/stories/gaiadatarelease2022">Gaia’s third data release (DR3)</a> contained data on over 1.8 billion stars, building a pretty complete view of the Milky Way and beyond. However, there remained gaps in our mapping. Gaia had not yet fully explored areas of sky that were especially densely packed with stars, leaving these comparatively unexplored – and overlooking stars shining less brightly than their many neighbours.</p>&#13; &#13; <p><a href="https://www.esa.int/ESA_Multimedia/Images/2022/07/Portrait_of_a_globular_cluster">Globular clusters</a> are a key example of this. These clusters are some of the oldest objects in the Universe, making them especially valuable to scientists looking at our cosmic past. Unfortunately, their bright cores, chock-full of stars, can overwhelm telescopes attempting to get a clear view. As such, they remain missing pieces in our maps of the Universe.</p>&#13; &#13; <p>To patch the gaps in our maps, Gaia selected Omega Centauri, the largest globular cluster that can be seen from Earth. Rather than just focusing on individual stars, as it typically would, Gaia enabled a special mode to truly map a wider patch of sky surrounding the cluster’s core every time the cluster came into view.</p>&#13; &#13; <p>“In Omega Centauri, we discovered over half a million new stars Gaia hadn't seen before – from just one cluster!” says lead author Katja Weingrill of the Leibniz-Institute for Astrophysics Potsdam (AIP), Germany, and a member of the Gaia collaboration.</p>&#13; &#13; <p>“Through a new use of one of Gaia’s specialised engineering modes, we have been able to generate an imaging catalogue of some of the densest stellar fields in our galaxy,” said Dr Dafydd Wyn Evans, lead of the Gaia photometric development team. “This is enabling us to provide a more complete view of all components of the Milky Way, including the cores of Globular Clusters, some of the oldest structures in our Galaxy.”</p>&#13; &#13; <p>This finding not only meets but actually exceeds Gaia’s planned potential. ֱ̽team used an observing mode designed to ensure that all of Gaia’s instruments are running smoothly.</p>&#13; &#13; <p>“ ֱ̽Gaia Sky Mapper images required the development of a new processing pipeline to measure the accurate brightness of the hundreds of thousands faint stars not seen by Gaia before,” said Dr Francesca De Angeli, lead of Gaia’s Photometric Data Processing Centre in Cambridge. “This rich data probes regions of the sky previously unseen by Gaia, and fills in important gaps in earlier data releases.”</p>&#13; &#13; <p> ֱ̽new stars revealed in Omega Centauri mark one of the most crowded regions explored by Gaia so far.</p>&#13; &#13; <p>Gaia is currently exploring eight more regions in this way, with the results to be included in Gaia Data Release 4. These data will help astronomers to truly understand what is happening within these cosmic building blocks, a crucial step for scientists aiming to confirm the age of our galaxy, locate its centre, figure out whether it has gone through any past collisions, verify how stars change through their lifetimes, constrain our models of galactic evolution, and ultimately infer the possible age of the Universe itself.</p>&#13; &#13; <p><strong>Looking for lenses: Gaia the accidental cosmologist</strong></p>&#13; &#13; <p>While Gaia was not designed for cosmology, its new findings peer deep into the distant Universe, hunting for elusive and exciting objects that hold clues to some of humanity’s biggest questions about the cosmos: gravitational lenses.</p>&#13; &#13; <p>Gravitational lensing occurs when the image of a faraway object becomes warped by a disturbing mass – a star or galaxy, for instance – sitting between us and the object. This intermediate mass acts as a giant magnifying glass, or lens, that can amplify the brightness of light and cast multiple images of the faraway source onto the sky. These rare configurations hold immense scientific value, revealing clues about the earliest days of the Universe.</p>&#13; &#13; <p> ֱ̽team identified the candidates from an extensive list of possible quasars (including those from <a href="https://www.cosmos.esa.int/web/gaia/dr3-quasar-candidates">Gaia DR3</a>). Five of the possible lenses are potential Einstein crosses, rare lensed systems with four different image components shaped like a cross. (See <a href="https://sci.esa.int/web/gaia/-/12-rare-einstein-crosses-discovered-with-gaia">12 such configurations discovered by Gaia in 2021</a>.)</p>&#13; &#13; <p>Finding lensed quasars is challenging. A lensed system’s constituent images can clump together on the sky in misleading ways, and most are very far away, making them faint and tricky to spot.</p>&#13; &#13; <p>Extending Gaia’s value into cosmology brings synergy with <a href="https://www.esa.int/Science_Exploration/Space_Science/Euclid">ESA’s Euclid mission</a>, recently launched on its quest to explore the dark Universe. While both focus on different parts of the cosmos – Euclid on mapping billions of galaxies, Gaia on mapping billions of stars – the lensed quasars discovered by Gaia can be used to guide future exploration with Euclid.</p>&#13; &#13; <p><strong>Asteroids, stacked starlight and pulsating stars</strong></p>&#13; &#13; <p>Other papers published today offer further insight into the space around us, and the diverse and sometimes mysterious objects within it.</p>&#13; &#13; <p>One reveals more about 156,823 of the <a href="https://www.esa.int/ESA_Multimedia/Videos/2022/06/Asteroid_populations_in_Gaia_data_release_3">asteroids identified as part of Gaia DR3</a>. ֱ̽new dataset pinpoints the positions of these rocky bodies over nearly double the previous timespan, making most of their orbits – based on Gaia observations alone – 20 times more precise. In the future, Gaia DR4 will complete the set and include comets, planetary satellites and double the number of asteroids, improving our knowledge of the small bodies in nearby space.</p>&#13; &#13; <p>Another paper maps the disc of the Milky Way by tracing weak signals seen in starlight, faint imprints of the gas and dust that floats between the stars. ֱ̽Gaia team stacked six million spectra to study these signals, forming a dataset of weak features that have never been measured in such a large sample. ֱ̽dataset will hopefully allow scientists to narrow down the source of these signals, which the team suspects to be a complex organic molecule. Knowing more about where this signal comes from helps us to study the physical and chemical processes active throughout our galaxy, and to understand more about the material lying between stars.</p>&#13; &#13; <p>Finally, a paper characterises the dynamics of 10,000 pulsating and binary red giant stars in by far the largest such database available to date. These stars were part of a catalogue of two million variable star candidates released in Gaia DR3, and are key when calculating cosmic distances, confirming stellar characteristics, and clarifying how stars evolve throughout the cosmos. ֱ̽new release provides a better understanding of how these stars change over time.</p>&#13; &#13; <p>“This data release further demonstrates Gaia’s broad and fundamental value – even on topics it wasn’t initially designed to address,” said Timo Prusti, Project Scientist for Gaia at ESA.</p>&#13; &#13; <p><strong> ֱ̽next steps</strong></p>&#13; &#13; <p>Gaia’s previous Data Release, Gaia DR3, came on 13 June 2022. It was the most detailed survey of the Milky Way to date, and a treasure trove of data on strange ‘starquakes’, asymmetrically moving stars, stellar DNA and more. Gaia DR3 contained new and improved details for almost two billion stars in the Milky Way, and included the largest catalogues of binary stars, thousands of Solar System objects, and – more distantly and outside of our galaxy – millions of galaxies and quasars.</p>&#13; &#13; <p> ֱ̽mission’s next Data Release, Gaia DR4, is expected not before the end of 2025. It will build upon both Gaia DR3 and this interim focused product release to further improve our understanding of the multi-dimensional Milky Way. It will refine our knowledge of stars’ colours, positions, and movements; resolve variable and multiple star systems; identify and characterise quasars and galaxies; list exoplanet candidates; and more.</p>&#13; &#13; <p><em>Adapted from an ESA press release.</em></p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p> ֱ̽European Space Agency’s <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia">Gaia mission</a> has released a goldmine of knowledge about our galaxy and beyond. Among other findings, the star surveyor has surpassed its planned potential to reveal half a million new and faint stars in a massive cluster, identified over 380 possible cosmic lenses, and pinpointed the positions of more than 150,000 asteroids within the Solar System.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">This release represents but a small taste of the riches to be revealed with the publication of the next full release, Gaia DR4</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Nicholas Walton</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/ESA_Multimedia/Images/2023/10/New_Gaia_image_of_Omega_Centauri" target="_blank">ESA/Gaia/DPAC</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Gaia view of Omega Centauri </div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br />&#13; ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Tue, 10 Oct 2023 12:47:51 +0000 sc604 242531 at Webb sees carbon-rich dust grains in the first billion years of cosmic time /research/news/webb-sees-carbon-rich-dust-grains-in-the-first-billion-years-of-cosmic-time <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/weic2317b-h1dd3n-crop.jpg?itok=2cObX16a" alt=" ֱ̽image shows a deep galaxy field, featuring thousands of galaxies of various shapes and sizes. A cutout indicates a particular galaxy, known as JADES-GS-z6, which was a research target for this result. It appears as a blurry smudge of blue, red and green." title="Galaxy JADES-GS-z6 in the GOODS-S field: JADES (NIRCam image), Credit: ESA/Webb, NASA, ESA, CSA" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Similar observational signatures have been observed in the much more recent universe, and have been attributed to complex, carbon-based molecules known as polycyclic aromatic hydrocarbons (PAHs). It is not thought likely, however, that PAHs would have developed within the first billion years of cosmic time.</p>&#13; &#13; <p> ֱ̽international team, including researchers from the ֱ̽ of Cambridge, say that Webb may have observed a different species of carbon-based molecule: possibly minuscule graphite- or diamond-like grains produced by the earliest stars or supernovas. Their <a href="https://www.nature.com/articles/s41586-023-06413-w">results</a>, which suggest that infant galaxies in the early universe developed much faster than anticipated, are reported in the journal <em>Nature</em>.</p>&#13; &#13; <p> ֱ̽seemingly empty spaces in our universe are in reality often not empty at all, but are filled by clouds of gas and cosmic dust. This dust consists of grains of various sizes and compositions that are formed and ejected into space in a variety of ways, including by supernova events.</p>&#13; &#13; <p>This material is crucial to the evolution of the universe, as dust clouds ultimately form the birthplaces for new stars and planets. However, the dust absorbs stellar light at certain <a href="https://esawebb.org/wordbank/electromagnetic-spectrum/">wavelengths</a>, making some regions of space challenging to observe.</p>&#13; &#13; <p>An upside is that certain molecules will consistently absorb or otherwise interact with specific wavelengths of light. This means that astronomers can get information about the cosmic dust’s composition by observing the wavelengths of light that it blocks.</p>&#13; &#13; <p> ֱ̽Cambridge-led team of astronomers used this technique, combined with Webb’s extraordinary sensitivity, to detect the presence of carbon-rich dust grains only a billion years after the birth of the universe.</p>&#13; &#13; <p>“Carbon-rich dust grains can be particularly efficient at absorbing ultraviolet light with a wavelength around 217.5 nanometres, which for the first time we have directly observed in the spectra of very early galaxies,” said lead author <a href="https://joriswitstok.com/">Dr Joris Witstok</a> from Cambridge’s <a href="https://www.kicc.cam.ac.uk/">Kavli Institute for Cosmology</a>.</p>&#13; &#13; <p>This 217.5-nanometre feature has previously been observed in the much more recent and local Universe, including within our own Milky Way galaxy, and has been attributed to two different types of carbon-based molecules: polycyclic aromatic hydrocarbons (PAHs) or nano-sized graphitic grains.</p>&#13; &#13; <p>According to most models, it should take several hundreds of millions of years before PAHs form, so it would be surprising if the team had observed the chemical signature of molecules that shouldn’t have formed yet. However, according to the researchers, this result is the earliest and most distant direct signature for this carbon-rich dust grain.</p>&#13; &#13; <p> ֱ̽answer may lie in the details of what was observed. ֱ̽feature observed by the team peaked at 226.3 nanometres, not the 217.5-nanometre wavelength associated with PAHs and tiny graphitic grains. A discrepancy of less than ten nanometres could be accounted for by measurement error. Equally, it could also indicate a difference in the composition of the early universe cosmic dust mixture that the team detected.</p>&#13; &#13; <p>“This slight shift in wavelength of where the absorption is strongest suggests we may be seeing a different mix of grains, for example, graphite- or diamond-like grains,” said Witstok, who is also a Postdoctoral Research Associate at <a href="https://www.sid.cam.ac.uk/">Sidney Sussex College</a>. “This could also potentially be produced on short timescales by Wolf-Rayet stars or by material ejected from a supernova.”</p>&#13; &#13; <p>Models have previously suggested that nano-diamonds could be formed in the material ejected from supernovas; and huge, hot Wolf-Rayet stars, which live fast and die young, would give enough time for generations of stars to have been born, lived, and died, to distribute carbon-rich grains into the surrounding cosmic dust in under a billion years.</p>&#13; &#13; <p>However, it is still a challenge to fully explain these results with the existing understanding of the early formation of cosmic dust. These results will go on to inform the development of improved models and future observations.</p>&#13; &#13; <p>With the advent of Webb, astronomers are now able to make detailed observations of the light from individual dwarf galaxies, seen in the first billion years of cosmic time. Webb finally permits the study of the origin of cosmic dust and its role in the crucial first stages of galaxy evolution.</p>&#13; &#13; <p>“This discovery was made possible by the unparalleled sensitivity improvement in near-infrared spectroscopy provided by Webb, and specifically its Near-Infrared Spectrograph (<a href="https://esawebb.org/about/instruments/nirspec/">NIRSpec</a>),” said co-author Professor Roberto Maiolino, who is based in the Cavendish Laboratory and the Kavli Institute for Cosmology. “ ֱ̽increase in sensitivity provided by Webb is equivalent, in the visible, to instantaneously upgrading Galileo’s 37-millimetre telescope to the 8-metre Very Large Telescope, one of the most powerful modern optical telescopes.”</p>&#13; &#13; <p> ֱ̽team is planning further research into the data and this result. “We are planning to work with theorists who model dust production and growth in galaxies,” said co-author Irene Shivaei of the ֱ̽ of Arizona/Centro de Astrobiología (CAB). “This will shed light on the origin of dust and heavy elements in the early universe.”</p>&#13; &#13; <p>These observations were made as part of the JWST Advanced Deep Extragalactic Survey, or JADES. This programme has facilitated the discovery of <a href="https://esawebb.org/images/JADES2/">hundreds of galaxies</a> that existed when the universe was less than 600 million years old, including some of the farthest galaxies <a href="https://esawebb.org/images/JADES1/">known to date</a>.</p>&#13; &#13; <p>“I’ve studied galaxies in the first billion years of cosmic time my entire career and never did we expect to find such a clear signature of cosmic dust in such distant galaxies,” said co-author Dr Renske Smit from Liverpool John Moores ֱ̽. “ ֱ̽ultradeep data from JWST is showing us that grains made up of diamond-like dust can form in the most primordial of systems. This is completely overthrowing models of dust formation and opening up a whole new way of studying the chemical enrichment of the very first galaxies.”</p>&#13; &#13; <p>Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA). This research was supported in part by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).</p>&#13; &#13; <p><em><strong>Reference:</strong><br />&#13; Joris Witstok et al. ‘<a href="https://www.nature.com/articles/s41586-023-06413-w">Carbonaceous dust grains seen in the first billion years of cosmic time</a>.’ Nature (2023). DOI: 10.1038/s41586-023-06413-w</em></p>&#13; &#13; <p><em>Adapted from an ESA press release.</em></p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>For the first time, the <a href="https://www.esa.int/Science_Exploration/Space_Science/Webb">James Webb Space Telescope</a> has observed the chemical signature of carbon-rich dust grains in the early universe.</p>&#13; </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://esawebb.org/images/weic2317b-h1dd3n/" target="_blank">ESA/Webb, NASA, ESA, CSA</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Galaxy JADES-GS-z6 in the GOODS-S field: JADES (NIRCam image)</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br />&#13; ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/social-media/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/public-domain">Public Domain</a></div></div></div> Wed, 19 Jul 2023 15:00:48 +0000 sc604 240781 at Mission to map the dark Universe sets off on space journey /research/news/mission-to-map-the-dark-universe-sets-off-on-space-journey <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/last-glimpse-of-euclid-on-earth-small.jpg?itok=IwnyohT0" alt="Euclid space telescope" title="Last glimpse of Euclid on Earth, Credit: ESA" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽Euclid space telescope will map the 'dark Universe' by observing billions of galaxies out to 10 billion light-years, across more than a third of the sky, to gather data on how its structure has formed over its cosmic history.</p>&#13; &#13; <p>Led by the European Space Agency (ESA) and a consortium of 2,000 scientists, including from the ֱ̽ of Cambridge, Euclid will spend six years venturing through space with two scientific instruments: a UK-built visible imager (VIS) that will become one of the largest cameras ever sent into space, and a near-infrared spectrometer and photometer, developed in France. ֱ̽mission is supported by funding from the UK Space Agency.</p>&#13; &#13; <p>“Watching the launch of Euclid, I feel inspired by the years of hard work from thousands of people that go into space science missions, and the fundamental importance of discovery – how we set out to understand and explore the Universe,” said Chief Executive of the UK Space Agency, Dr Paul Bate. “ ֱ̽UK Space Agency’s investment in Euclid has supported world-class science on this journey, from the development of the ground segment to the build of the crucial visible imager instrument, which will help humanity begin to uncover the mysteries of dark matter and dark energy.”</p>&#13; &#13; <p>Euclid took off on board a SpaceX spacecraft from Cape Canaveral in Florida at 4.11pm (BST) on 1 July.</p>&#13; &#13; <p>Cambridge’s Institute of Astronomy team has been involved in Euclid since 2010, supporting development of the astrometric calibration pipeline for the optical image data from Euclid, ensuring that the positions of the billions of sources to be imaged by Euclid can be determined to exquisite accuracy.</p>&#13; &#13; <p>“Dark energy and dark matter fundamentally govern the formation and evolution of our Universe,” said Dr Nicholas Walton from the Institute of Astronomy. “ ֱ̽Euclid mission will finally uncover the mysteries of how these ‘dark’ forces have shaped the cosmos that we see today, from life here on Earth, to our Sun, our Milky Way, our nearby galaxy neighbours, and the wider Universe beyond.”</p>&#13; &#13; <p> ֱ̽Science and Technology Facilities Council (STFC) also contributed to design and development work on Euclid instrumentation and provided funding to UK astronomy teams who will analyse the data returned from the mission about the physics responsible for the observed accelerated expansion of the Universe. </p>&#13; &#13; <p>“This is a fantastic example of close collaboration between scientists, engineers, technicians, and astronomers across Europe working together to tackle some of the biggest questions in science,” said Mark Thomson, Executive Chair at STFC.</p>&#13; &#13; <p>UK Space Agency funding for the Euclid mission is divided between teams at ֱ̽ College London, ֱ̽Open ֱ̽, ֱ̽ of Cambridge, ֱ̽ of Edinburgh, ֱ̽ of Oxford, ֱ̽ of Portsmouth and Durham ֱ̽.</p>&#13; &#13; <p> ֱ̽wider Euclid Consortium includes experts from 300 organisations across 13 European countries, the US, Canada and Japan.</p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A European mission to explore how gravity, dark energy and dark matter shaped the evolution of the Universe soared into space from Cape Canaveral on 1 July.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"> ֱ̽Euclid mission will finally uncover the mysteries of how these ‘dark’ forces have shaped the cosmos that we see today, from life here on Earth, to our Sun, our Milky Way, our nearby galaxy neighbours, and the wider Universe beyond</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Nicholas Walton</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/Science_Exploration/Space_Science/Euclid" target="_blank">ESA</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Last glimpse of Euclid on Earth</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br />&#13; ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Sat, 01 Jul 2023 15:16:27 +0000 sc604 240391 at Astronomers observe light bending around an isolated white dwarf /stories/light-bending-around-star <div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have directly measured the mass of a dead star using an effect known as gravitational microlensing, first predicted by Einstein in his General Theory of Relativity, and first observed by two Cambridge astronomers 100 years ago.</p> </p></div></div></div> Thu, 02 Feb 2023 08:08:58 +0000 sc604 236661 at Webb telescope reaches new milestone in its search for distant galaxies /research/news/webb-telescope-reaches-new-milestone-in-its-search-for-distant-galaxies <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/jades-3.jpg?itok=WPVKzSO0" alt="This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES)." title="This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES)., Credit: NASA, ESA, CSA, M. Zamani (ESA/Webb)" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>An international team of astronomers, including scientists at the Universities of Cambridge, Hertfordshire and Oxford, has reported the discovery of the earliest galaxies ever confirmed in our Universe.</p>&#13; &#13; <p>Using data from the <a href="https://esawebb.org/">James Webb Space Telescope (JWST)</a>, scientists have confirmed observations of galaxies dating back to the earliest days of the Universe, less than 350 million years after the Big Bang – when the Universe was just 2% of its current age.</p>&#13; &#13; <p>Images from JWST had previously suggested possible candidates for such early galaxies. Now, their age has been confirmed using long spectroscopic observations, which measure light to determine the speed and composition of objects in space.</p>&#13; &#13; <p>These observations have revealed distinctive patterns in the tiny amount of light coming from these incredibly faint galaxies, allowing scientists to establish that the light they are emitting has taken 13.4 billion years to reach us, and corroborating their status as some of the earliest galaxies ever observed.</p>&#13; &#13; <p>Scientists can also now confirm that two of these galaxies are further away than any observations made by the Hubble telescope – underlining JWST’s incredible power and ability to detect never-before-seen parts of the earliest Universe.</p>&#13; &#13; <p>“It was crucial to prove that these galaxies do indeed inhabit the early Universe, as it’s very possible for closer galaxies to masquerade as very distant galaxies,” said Dr Emma Curtis-Lake from the ֱ̽ of Hertfordshire, lead author on <a href="https://webbtelescope.org/files/live/sites/webb/files/home/webb-science/early-highlights/_documents/2022-061-jades/JADES_CurtisLake.pdf">one of two papers</a> on the findings. “Seeing the spectrum revealed as we hoped, confirming these galaxies as being at the true edge of our view, some further away than Hubble could see – it is a tremendously exciting achievement for the mission!”</p>&#13; &#13; <p> ֱ̽findings have been achieved by an international collaboration of more than 80 astronomers from ten countries via the JWST Advanced Deep Extragalactic Survey (JADES) programme. ֱ̽team were allocated just over a month of observation on the telescope, using the two on-board instruments: the Near-Infrared Spectrograph (<a href="https://esawebb.org/about/instruments/nirspec/">NIRSpec</a>) and the Near-Infrared Camera (<a href="https://esawebb.org/about/instruments/nircam-niriss/">NIRCam</a>). These instruments were developed with the primary purpose of investigating the earliest and faintest galaxies.</p>&#13; &#13; <p>“It is hard to understand galaxies without understanding the initial periods of their development,” said Dr Sandro Tacchella from Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology, co-lead author on the <a href="https://arxiv.org/ftp/arxiv/papers/2212/2212.04480.pdf">second paper</a>. “Much as with humans, so much of what happens later depends on the impact of these early generations of stars. So many questions about galaxies have been waiting for the transformative opportunity of Webb, and we’re thrilled to be able to play a part in revealing this story.”</p>&#13; &#13; <p>“For the first time, we have discovered galaxies only 350 million years after the big bang, and we can be absolutely confident of their fantastic distances,” said Brant Robertson from the ֱ̽ of California Santa Cruz, co-lead author on the second paper. “To find these early galaxies in such stunningly beautiful images is a special experience.”</p>&#13; &#13; <p>Across 10 days of their observation time, the JADES team of astronomers focused on a small patch of sky in and around <a href="https://esahubble.org/">Hubble Space Telescope’s</a> <a href="https://esahubble.org/images/heic0611b/">Ultra Deep Field</a>, which for over 20 years has been a favourite of astronomers and has been analysed at the limit of nearly every large telescope to have existed. However, with JWST, the team were able to observe in nine different infrared wavelength ranges, providing an exquisitely sharp and sensitive picture of the field. ֱ̽image reveals nearly 100,000 galaxies, each billions of light years away, in a pinprick of the sky equivalent to looking at a mobile phone screen across a football field.</p>&#13; &#13; <p> ֱ̽very earliest galaxies were identifiable by their distinctive banded colours, visible in infrared light but invisible in other wavelengths. In one rare continuous 28-hour observation window, the Near-Infrared Spectrograph was used to spread out the light emitting from each galaxy into a rainbow spectrum. This allowed astronomers to measure the amount of light received at each wavelength and study the unique light patterns created by the properties of the gas and stars within each galaxy.</p>&#13; &#13; <p>Crucially, four of the galaxies were revealed to originate earlier in the Universe than any previous observations.</p>&#13; &#13; <p>“Our observations suggest that the formation of the first stars and galaxies started very early in the history of the Universe,” said Professor Andrew Bunker from the ֱ̽ of Oxford.</p>&#13; &#13; <p>“This is a major leap forward in our understanding of how the first galaxies formed,” said Professor Roberto Maiolino from Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology, co-author on one of the two papers. “We have been able to dissect the light coming from these galaxies in the very early universe and, for the first time, characterise in detail their properties. It’s really fascinating and intriguing to discover how young these systems were and that stellar processes hadn’t yet managed to pollute these galaxies with chemical elements heavier than helium.”</p>&#13; &#13; <p>Astronomers in the JADES team now plan to focus on another area of the sky to conduct further spectroscopy and imaging, hoping to reveal more about the earliest origins of our Universe and how these first galaxies evolve with cosmic time.</p>&#13; &#13; <p>More information about the findings can be found in a <a href="https://blogs.nasa.gov/webb/2022/12/09/nasas-webb-reaches-new-milestone-in-quest-for-distant-galaxies/">newly-published NASA blog</a>. Pre-prints of the team’s two papers, which have not yet been peer-reviewed, are <a href="https://webbtelescope.org/files/live/sites/webb/files/home/webb-science/early-highlights/_documents/2022-061-jades/JADES_CurtisLake.pdf">available</a> <a href="https://arxiv.org/ftp/arxiv/papers/2212/2212.04480.pdf">online</a>.</p>&#13; &#13; <p> ֱ̽James Webb Space Telescope is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). Sandro Tacchella is a Fellow of St Edmund’s College, Cambridge.</p>&#13; &#13; <p><em>Adapted from a ֱ̽ of Hertfordshire <a href="https://www.herts.ac.uk/about-us/news-and-events/news/2022/breakthrough-from-webb-telescope-confirmation-of-galaxies-in-the-very-early-universe">media release</a>.</em></p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>New findings confirm that JWST has surpassed the Hubble telescope in its ability to observe the early Universe</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">So many questions about galaxies have been waiting for the transformative opportunity of Webb, and we’re thrilled to be able to play a part in revealing this story</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Sandro Tacchella</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://webbtelescope.org/contents/media/images/01GKT0RRJBP5ZMJRMCQNPT8SXP" target="_blank">NASA, ESA, CSA, M. Zamani (ESA/Webb)</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES).</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br />&#13; ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Fri, 09 Dec 2022 14:50:15 +0000 sc604 235901 at