探花直播 of Cambridge - ARIA /taxonomy/external-affiliations/aria en Cambridge researchers developing brain implants for treating Parkinson鈥檚 disease /research/news/cambridge-researchers-developing-brain-implants-for-treating-parkinsons-disease <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/gettyimages-1328336703-dp.jpg?itok=Q-NakEwR" alt="Substantia nigra in the human brain, illustration" title="Substantia nigra in the human brain, illustration, Credit: Science Photo Library via Getty Images" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>As part of a 拢69 million funding programme supported by the <a href="https://www.aria.org.uk/">Advanced Research + Invention Agency</a> (ARIA), <a href="https://bioelectronics.eng.cam.ac.uk/">Professor George Malliaras</a> from Cambridge鈥檚 Department of Engineering will co-lead a project that uses small clusters of brain cells called midbrain organoids to develop a new type of brain implant, which will be tested in animal models of Parkinson鈥檚 disease.</p> <p> 探花直播project led by Malliaras and <a href="https://www.stemcells.cam.ac.uk/people/pi/barker">Professor Roger Barker</a> from the Department of Clinical Neurosciences, which involves colleagues from the 探花直播 of Oxford, the 探花直播 of Lund and BIOS Health, is one of 18 projects funded by ARIA as part of its <a href="https://www.aria.org.uk/opportunity-spaces/scalable-neural-interfaces/precision-neurotechnologies">Precision Neurotechnologies programme</a>, which is supporting research teams across academia, non-profit R&amp;D organisations, and startups dedicated to advancing brain-computer interface technologies.</p> <p> 探花直播programme will direct 拢69 million over four years to unlock new methods for interfacing with the human brain at the neural circuit level, to treat many of the most complex neurological and neuropsychiatric disorders, from Alzheimer鈥檚 to epilepsy to depression.</p> <p>By addressing bottlenecks in funding and the lack of precision offered by current approaches, the outputs of this programme will pave the way for addressing a much broader range of conditions than ever before, significantly reducing the social and economic impact of brain disorders across the UK.</p> <p>Parkinson鈥檚 disease occurs when the brain cells that make dopamine (a chemical that helps control movement) die off, causing movement problems and other symptoms. Current treatments, like dopamine-based drugs, work well early on, but can cause serious side effects over time.</p> <p>In the UK, 130,000 people have Parkinson鈥檚 disease, and it costs affected families about 拢16,000 per year on average 鈥 more than 拢2 billion in the UK annually. As more people age, the number of cases will grow, and new treatments are urgently needed.</p> <p>One idea is to replace the lost dopamine cells by transplanting new ones into the brain. But these cells need to connect properly to the brain鈥檚 network to fix the problem, and current methods don鈥檛 fully achieve that.</p> <p>In the ARIA-funded project, Malliaras and his colleagues are working on a new approach using small clusters of brain cells called midbrain organoids. These will be placed in the right part of the brain in an animal model of Parkinson鈥檚 disease. They鈥檒l also use advanced materials and electrical stimulation to help the new cells connect and rebuild the damaged pathways.</p> <p>鈥淥ur ultimate goal is to create precise brain therapies that can restore normal brain function in people with Parkinson鈥檚,鈥 said Malliaras.</p> <p>鈥淭o date, there鈥檚 been little serious investment into methodologies that interface precisely with the human brain, beyond 鈥榖rute force鈥 approaches or highly invasive implants,鈥 said ARIA Programme Director Jacques Carolan. 鈥淲e鈥檙e showing that it鈥檚 possible to develop elegant means of understanding, identifying, and treating many of the most complex and devastating brain disorders. Ultimately, this could deliver transformative impact for people with lived experiences of brain disorders.鈥</p> <p>Other teams funded by the programme include one at Imperial College London who is developing an entirely new class of biohybridised technology focused on engineering transplanted neurons with bioelectric components. A Glasgow-led team will build advanced neural robots for closed-loop neuromodulation, specifically targeting epilepsy treatment, while London-based Navira will develop a technology for delivering gene therapies across the blood-brain barrier, a crucial step towards developing safer and more effective treatments.</p> <p><em>Adapted from an ARIA media release.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Cambridge researchers are developing implants that could help repair the brain pathways damaged by Parkinson鈥檚 disease.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">Our ultimate goal is to create precise brain therapies that can restore normal brain function in people with Parkinson鈥檚</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">George Malliaras</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.gettyimages.co.uk/detail/illustration/substantia-nigra-in-the-human-brain-royalty-free-illustration/1328336703?phrase=brain parkinson&#039;s disease&amp;searchscope=image,film&amp;adppopup=true" target="_blank">Science Photo Library via Getty Images</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Substantia nigra in the human brain, illustration</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> 探花直播text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 23 Jan 2025 10:33:21 +0000 sc604 248658 at Cambridge researchers announced as programme directors for new UK funding agency /news/cambridge-researchers-announced-as-programme-directors-for-new-uk-funding-agency <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/fantasy-art-7851822-1280.jpg?itok=uUDrhBqm" alt="Abstract image" title="Credit: None" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://www.aria.org.uk/">ARIA</a> is a government-funded agency that aims to unlock scientific and technological breakthroughs that could benefit everyone. Many of society鈥檚 most important advances have stemmed from those with the foresight to pursue new capabilities that most believed to be unattainable. ARIA aims to empower scientists and engineers with the resources and freedom to pursue those breakthroughs.</p>&#13; &#13; <p> 探花直播new programme directors include:</p>&#13; &#13; <h3>Gemma Bale</h3>&#13; &#13; <p>Gemma is the Gianna Angelopoulos Assistant Professor in Medical Therapeutics and Head of the Neuro Optics Lab at the 探花直播 of Cambridge. Her work focuses on developing non-invasive brain monitoring in real-world environments where traditional brain monitoring isn鈥檛 usually possible.</p>&#13; &#13; <h3>Sarah Bohndiek</h3>&#13; &#13; <p>Sarah is a Professor of Biomedical Physics at the 探花直播 of Cambridge, jointly appointed in the Department of Physics and the Cancer Research UK Cambridge Institute. Sarah leads an interdisciplinary team that uses optical imaging technology to monitor in situ tumour evolution and support earlier cancer detection.</p>&#13; &#13; <h3>Angie Burnett</h3>&#13; &#13; <p>Angie is a plant biologist, focused on investigating the responses of crop plants to environmental stresses, such as drought and extreme temperature. Angie worked as a Postdoctoral Research Associate at Brookhaven National Laboratory and a Consultant at the Food and Agriculture Organization of the United Nations, before becoming a Research Associate at the 探花直播 of Cambridge.</p>&#13; &#13; <p>Writing on the ARIA website, Professor Bohndiek and Dr Bale said: 鈥淲e鈥檙e both passionate about the future health of our planet and the people on it. Working in the health tech space, we have created new tools to allow us to safely see inside humans in new ways using light. We believe that there are emerging optical technologies at the edge of the possible, which will disrupt the current landscape.</p>&#13; &#13; <p>鈥淎s co-PDs, we鈥檒l look to accelerate these technologies, initially by exploring ideas around non-invasive optical mapping and sensing across a range of applications 鈥 from monitoring human health to climate change.鈥</p>&#13; &#13; <p>Professor Anne Ferguson-Smith, Pro-Vice-Chancellor for Research at the 探花直播 of Cambridge, said: 鈥 探花直播launch of ARIA, a brand new funding organisation, is an important moment for UK research and innovation. It鈥檚 a remarkable reflection of the quality of Cambridge research that three of the eight new programme directors stem from our 探花直播, including two current academics. We wish them luck in this exciting new endeavour.鈥</p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>ARIA, the UK鈥檚 new R&amp;D funding agency, has announced its line-up of new programme directors 鈥 and three of them are current or former researchers from the 探花直播 of Cambridge.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">It鈥檚 a remarkable reflection of the quality of Cambridge research that three of the eight new programme directors stem from our 探花直播</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Anne Ferguson-Smith</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br />&#13; 探花直播text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified.聽 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 13 Sep 2023 11:23:03 +0000 cjb250 241701 at