探花直播 of Cambridge - Chander Velu /taxonomy/people/chander-velu en Five hubs launched to ensure UK benefits from quantum future /research/news/five-hubs-launched-to-ensure-uk-benefits-from-quantum-future <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/3_2.jpg?itok=XtdUhAyx" alt="L-R: Professor John Morton (UCL), Professor Rachel McKendry (UCL), Professor Mete Atat眉re (Cambridge), Professor Eleni Nastouli (UCL)" title="L-R: Professor John Morton (UCL), Professor Rachel McKendry (UCL), Professor Mete Atat眉re (Cambridge), Professor Eleni Nastouli (UCL), Credit: James Tye/UCL" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> 探花直播hub, called Q-BIOMED, is one of 5 quantum research hubs announced on 26 July by Peter Kyle MP, the Secretary of State for Science, Innovation and Technology, supported by 拢160 million in funding.</p> <p> 探花直播hub will exploit advances in quantum sensors capable of detecting cells and molecules, potentially orders of magnitude more sensitively than traditional diagnostic tests.</p> <p>This includes developing quantum-enhanced blood tests to diagnose infectious diseases and cancer quickly and cheaply using portable instruments, and sensors measuring tiny changes to the magnetic fields in the brain that have the potential to detect early markers of Alzheimer鈥檚 disease before symptoms occur.</p> <p>Other research will include quantum-enhanced MRI scans, heart scanners and surgical and treatment interventions for early-stage and hard-to-treat cancers.</p> <p>鈥淨uantum technologies harness quantum physics to achieve a functionality or a performance which is otherwise unattainable, deriving from science which cannot be explained by classical physics,鈥 said Hub Co-Director Professor Mete Atat眉re, Head of Cambridge鈥檚 Cavendish Laboratory. 鈥淨-BIOMED will be delivered by an outstanding team of researchers from academia, the NHS, charities, government and industry to exploit quantum-enhanced advances for human health and societal good.鈥</p> <p>鈥淥ur hub aims to grow a new quantum for health innovation ecosystem in the UK, and has already shaped the UK's new Quantum Mission for Health,鈥 said Hub Co-Director Professor Rachel McKendry, from the London Centre for Nanotechnology and Division of Medicine at UCL. 鈥淥ur long-term vision is to accelerate the entire innovation pipeline from discovery research, to translation, adoption and implementation within the NHS and global health systems, for the benefit of patients and societal good.鈥</p> <p>鈥淨uantum sensing allows us to gather information at cellular and molecular levels with unprecedented sensitivity to electric and magnetic fields," said Dr Ljiljana Fruk from the Department of Chemical Engineering and Biotechnology, a member of the Q-BIOMED team.聽"I look forward to learning from colleagues and engaging in challenging discussions to develop more sensitive, affordable tools for doctors and patients, advancing the future of healthcare.鈥澛<br /> <br /> Cambridge researchers are also involved in three of the other newly-announced hubs:</p> <ul> <li> 探花直播UK Hub for Quantum Enabled Position, Navigation and Timing (QEPNT), led by the 探花直播 of Glasgow, will develop quantum technologies which will be key for national security and critical infrastructure and sectors such as aerospace, connected and autonomous vehicles (CAVs), finance, maritime and agriculture. Luca Sapienza (Engineering), Louise Hirst (Materials Science and Metallurgy/Cavendish Laboratory) and Dave Ellis (Cavendish Laboratory) are part of the QEPNT team.</li> <li>QCI3: Hub for Quantum Computing via Integrated and Interconnected Implementations, led by the 探花直播 of Oxford, aims to develop the technologies needed for the UK to play a key role in the development of quantum computers, a market estimated to be worth $1.3 trillion by 2030. Ulrich Schneider (Cavendish Laboratory), Helena Knowles (Cavendish Laboratory), and Chander Velu (Institute for Manufacturing) are part of the QCI3 team.</li> <li> 探花直播Integrated Quantum Networks (IQN) Quantum Technology Research Hub, led by Heriot-Watt 探花直播, will undertake research towards the ultimate goal of a 鈥榪uantum internet鈥, globally interlinked quantum networks connecting multiple quantum computers to produce enormous computational power. Richard Penty, Adrian Wonfor and Qixiang Cheng (Engineering), Atat眉re and Dorian Gangloff (Cavendish Laboratory) are part of the IQN team.<be></be></li> </ul> <p> 探花直播fifth hub, UK Quantum Technology Hub in Sensing, Imaging and Timing (QuSIT), is led by the 探花直播 of Birmingham.</p> <p> 探花直播five hubs are delivered by the UKRI Engineering and Physical Sciences Research Council (EPSRC), with a 拢106 million investment from EPSRC, the UKRI Biotechnology and Biological Research Council, UKRI Medical Research Council, and the National Institute for Health and Care Research. Added to this are contributions from industry and other partners worth more than 拢54 million.</p> <p>Peter Kyle, Secretary of State for Science, Innovation and Technology, said: 鈥淲e want to see a future where cutting-edge science improves everyday lives. That is the vision behind our investment in these new quantum technology hubs, by supporting the deployment of technology that will mean faster diagnoses for diseases, critical infrastructure safe from hostile threats and cleaner energy for us all.</p> <p>鈥淭his isn鈥檛 just about research; it鈥檚 about putting that research to work. These hubs will bridge the gap between brilliant ideas and practical solutions. They will not only transform sectors like healthcare and security, but also create a culture of accelerated innovation that helps to grow our economy.鈥</p> <p>EPSRC Executive Chair Professor Charlotte Deane said: 鈥淭echnologies harnessing quantum properties will provide unparalleled power and capacity for analysis at a molecular level, with truly revolutionary possibilities across everything from healthcare to infrastructure and computing.</p> <p>鈥 探花直播5 Quantum Technology Hubs announced today will harness the UK鈥檚 expertise to foster innovation, support growth and ensure that we capitalise on the profound opportunities of this transformative technology.鈥</p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A major new research hub led by the 探花直播 of Cambridge and UCL aims to harness quantum technology to improve early diagnosis and treatment of disease.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">James Tye/UCL</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">L-R: Professor John Morton (UCL), Professor Rachel McKendry (UCL), Professor Mete Atat眉re (Cambridge), Professor Eleni Nastouli (UCL)</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> 探花直播text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways 鈥 on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Fri, 26 Jul 2024 06:30:07 +0000 sc604 247141 at Robots cause company profits to fall 鈥 at least at first /research/news/robots-cause-company-profits-to-fall-at-least-at-first <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/gettyimages-1408271637-dp.jpg?itok=uZqWd7Is" alt="Robots on a manufacturing line" title="Robots on a manufacturing line, Credit: kynny via Getty Images" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> 探花直播researchers, from the 探花直播 of Cambridge, studied industry data from the UK and 24 other European countries between 1995 and 2017, and found that at low levels of adoption, robots have a negative effect on profit margins. But at higher levels of adoption, robots can help increase profits.</p>&#13; &#13; <p>According to the researchers, this U-shaped phenomenon is due to the relationship between reducing costs, developing new processes and innovating new products. While many companies first adopt robotic technologies to decrease costs, this 鈥榩rocess innovation鈥 can be easily copied by competitors, so at low levels of robot adoption, companies are focused on their competitors rather than on developing new products. However, as levels of adoption increase and robots are fully integrated into a company鈥檚 processes, the technologies can be used to increase revenue by innovating new products.</p>&#13; &#13; <p>In other words, firms using robots are likely to focus initially on streamlining their processes before shifting their emphasis to product innovation, which gives them greater market power via the ability to differentiate from their competitors. 探花直播<a href="https://ieeexplore.ieee.org/document/10202238">results</a> are reported in the journal <em>IEEE Transactions on Engineering Management</em>.</p>&#13; &#13; <p>Robots have been widely used in industry since the 1980s, especially in sectors where they can carry out physically demanding, repetitive tasks, such as automotive assembly. In the decades since, the rate of robot adoption has increased dramatically and consistently worldwide, and the development of precise, electrically controlled robots makes them particularly useful for high-value manufacturing applications requiring greater precision, such as electronics.</p>&#13; &#13; <p>While robots have been shown to reliably raise labour productivity at an industry or country level, what has been less studied is how robots affect profit margins at a similar macro scale.</p>&#13; &#13; <p>鈥淚f you look at how the introduction of computers affected productivity, you actually see a slowdown in productivity growth in the 1970s and early 1980s, before productivity starts to rise again, which it did until the financial crisis of 2008,鈥 said co-author Professor Chander Velu from Cambridge鈥檚 Institute for Manufacturing. 鈥淚t鈥檚 interesting that a tool meant to increase productivity had the opposite effect, at least at first. We wanted to know whether there is a similar pattern with robotics.鈥</p>&#13; &#13; <p>鈥淲e wanted to know whether companies were using robots to improve processes within the firm, rather than improve the whole business model,鈥 said co-author Dr Philip Chen. 鈥淧rofit margin can be a useful way to analyse this.鈥</p>&#13; &#13; <p> 探花直播researchers examined industry-level data for 25 EU countries (including the UK, which was a member at the time) between 1995 and 2017. While the data did not drill down to the level of individual companies, the researchers were able to look at whole sectors, primarily in manufacturing where robots are commonly used.</p>&#13; &#13; <p> 探花直播researchers then obtained robotics data from the International Federation of Robotics (IFR) database. By comparing the two sets of data, they were able to analyse the effect of robotics on profit margins at a country level.</p>&#13; &#13; <p>鈥淚ntuitively, we thought that more robotic technologies would lead to higher profit margins, but the fact that we see this U-shaped curve instead was surprising,鈥 said Chen.</p>&#13; &#13; <p>鈥淚nitially, firms are adopting robots to create a competitive advantage by lowering costs,鈥 said Velu. 鈥淏ut process innovation is cheap to copy, and competitors will also adopt robots if it helps them make their products more cheaply. This then starts to squeeze margins and reduce profit margin.鈥</p>&#13; &#13; <p> 探花直播researchers then carried out a series of interviews with an American medical equipment manufacturer to study their experiences with robot adoption.</p>&#13; &#13; <p>鈥淲e found that it鈥檚 not easy to adopt robotics into a business 鈥 it costs a lot of money to streamline and automate processes,鈥 said Chen.</p>&#13; &#13; <p>鈥淲hen you start bringing more and more robots into your process, eventually you reach a point where your whole process needs to be redesigned from the bottom up,鈥 said Velu. 鈥淚t鈥檚 important that companies develop new processes at the same time as they鈥檙e incorporating robots, otherwise they will reach this same pinch point.鈥</p>&#13; &#13; <p> 探花直播researchers say that if companies want to reach the profitable side of the U-shaped curve more quickly, it鈥檚 important that the business model is adapted concurrently with robot adoption. Only after robots are fully integrated into the business model can companies fully use the power of robotics to develop new products, driving profits.</p>&#13; &#13; <p>A related piece of work being led by the Institute for Manufacturing is a community programme to help small- and medium-sized enterprises (SMEEs) to adopt digital technologies including robotics in a low-cost, low-risk way. 鈥淚ncremental and step changes in this area enable SMEs to get the benefits of cost reduction as well as margin improvements from new products,鈥 said co-author Professor Duncan McFarlane.</p>&#13; &#13; <p> 探花直播research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Economic and Social Research Council (ESRC), which are both part of UK Research and Innovation (UKRI). Chander Velu is a Fellow of Selwyn College, Cambridge. Duncan McFarlane is a Fellow of St John's College, Cambridge.聽</p>&#13; &#13; <p>聽</p>&#13; &#13; <p><em><strong>Reference:</strong><br />&#13; Yifeng P Chen, Chander Velu, Duncan McFarlane. 鈥<a href="https://ieeexplore.ieee.org/document/10202238"> 探花直播Effect of Robot Adoption on Profit Margins</a>.鈥 IEEE Transactions on Engineering Management (2023). DOI: 10.1109/TEM.2023.3260734</em></p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Researchers have found that robots can have a 鈥楿-shaped鈥 effect on profits: causing profit margins to fall at first, before eventually rising again.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">It鈥檚 important that companies develop new processes at the same time as they鈥檙e incorporating robots, otherwise they will reach this same pinch point</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Chander Velu</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.gettyimages.co.uk/detail/photo/smart-robot-in-manufacturing-industry-for-industry-royalty-free-image/1408271637?phrase=robot manufacturing&amp;amp;adppopup=true" target="_blank">kynny via Getty Images</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Robots on a manufacturing line</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br />&#13; 探花直播text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified.聽 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/social-media/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 03 Aug 2023 10:05:12 +0000 sc604 241131 at