探花直播 of Cambridge - Jong min Kim /taxonomy/people/jong-min-kim en Smart lighting system based on quantum dots more accurately reproduces daylight /research/news/smart-lighting-system-based-on-quantum-dots-more-accurately-reproduces-daylight <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/gettyimages-1182259805-crop.jpg?itok=de0H43VQ" alt="Long exposure light painting" title="Long exposure light painting , Credit: Yaorusheng via Getty Images" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> 探花直播researchers, from the 探花直播 of Cambridge, designed the next-generation smart lighting system using a combination of nanotechnology, colour science, advanced computational methods, electronics and a unique fabrication process.</p>&#13; &#13; <p> 探花直播team found that by using more than the three primary lighting colours used in typical LEDs, they were able to reproduce daylight more accurately. Early tests of the new design showed excellent colour rendering, a wider operating range than current smart lighting technology, and wider spectrum of white light customisation. 探花直播<a href="https://www.nature.com/articles/s41467-022-31853-9">results</a> are reported in the journal <em>Nature Communications</em>.</p>&#13; &#13; <p>As the availability and characteristics of ambient light are connected with wellbeing, the widespread availability of smart lighting systems can have a positive effect on human health since these systems can respond to individual mood. Smart lighting can also respond to circadian rhythms, which regulate the daily sleep-wake cycle, so that light is reddish-white in the morning and evening, and bluish-white during the day.</p>&#13; &#13; <p>When a room has sufficient natural or artificial light, good glare control, and views of the outdoors, it is said to have good levels of visual comfort. In indoor environments under artificial light, visual comfort depends on how accurately colours are rendered. Since the colour of objects is determined by illumination, smart white lighting needs to be able to accurately express the colour of surrounding objects. Current technology achieves this by using three different colours of light simultaneously.</p>&#13; &#13; <p>Quantum dots have been studied and developed as light sources since the 1990s, due to their high colour tunability and colour purity. Due their unique optoelectronic properties, they show excellent colour performance in both wide colour controllability and high colour rendering capability.</p>&#13; &#13; <p> 探花直播Cambridge researchers developed an architecture for quantum-dot light-emitting diodes (QD-LED) based next-generation smart white lighting. They combined system-level colour optimisation, device-level optoelectronic simulation, and material-level parameter extraction.</p>&#13; &#13; <p> 探花直播researchers produced a computational design framework from a colour optimisation algorithm used for neural networks in machine learning, together with a new method for charge transport and light emission modelling.</p>&#13; &#13; <p> 探花直播QD-LED system uses multiple primary colours 鈥 beyond the commonly used red, green and blue 鈥 to more accurately mimic white light. By choosing quantum dots of a specific size 鈥 between three and 30 nanometres in diameter 鈥 the researchers were able to overcome some of the practical limitations of LEDs and achieve the emission wavelengths they needed to test their predictions.</p>&#13; &#13; <p> 探花直播team then validated their design by creating a new device architecture of QD-LED based white lighting. 探花直播test showed excellent colour rendering, a wider operating range than current technology, and a wide spectrum of white light shade customisation.</p>&#13; &#13; <p> 探花直播Cambridge-developed QD-LED system showed a correlated colour temperature (CCT) range from 2243K (reddish) to 9207K (bright midday sun), compared with current LED-based smart lights which have a CCT between 2200K and 6500K. 探花直播colour rendering index (CRI) 鈥 a measure of colours illuminated by the light in comparison to daylight (CRI=100) 鈥 of the QD-LED system was 97, compared to current smart bulb ranges, which are between 80 and 91.</p>&#13; &#13; <p> 探花直播design could pave the way to more efficient, more accurate smart lighting. In an LED smart bulb, the three LEDs must be controlled individually to achieve a given colour. In the QD-LED system, all the quantum dots are driven by a single common control voltage to achieve the full colour temperature range.</p>&#13; &#13; <p>鈥淭his is a world-first: a fully optimised, high-performance quantum-dot-based smart white lighting system,鈥 said <a href="https://www.eng.cam.ac.uk/profiles/jmk71">Professor Jong Min Kim</a> from Cambridge鈥檚 Department of Engineering, who co-led the research. 鈥淭his is the first milestone toward the full exploitation of quantum-dot-based smart white lighting for daily applications.鈥</p>&#13; &#13; <p>鈥 探花直播ability to better reproduce daylight through its varying colour spectrum dynamically in a single light is what we aimed for,鈥 said <a href="https://www.eng.cam.ac.uk/profiles/gaja1">Professor Gehan Amaratunga</a>, who co-led the research. 鈥淲e achieved it in a new way through using quantum dots. This research opens the way for a wide variety of new human responsive lighting environments.鈥</p>&#13; &#13; <p> 探花直播structure of the QD-LED white lighting developed by the Cambridge team is scalable to large area lighting surfaces, as it is made with a printing process and its control and drive is similar to that in a display. With standard point source LEDs requiring individual control this is a more complex task.</p>&#13; &#13; <p> 探花直播research was supported in part by the European Union and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).</p>&#13; &#13; <p>聽</p>&#13; &#13; <p><em><strong>Reference:</strong><br />&#13; Chatura Samarakoon et al. 鈥<a href="https://www.nature.com/articles/s41467-022-31853-9">Optoelectronic System and Device Integration for Quantum-Dot Light-Emitting Diode White Lighting with Computational Design Framework</a>.鈥 Nature Communications (2022). DOI: 10.1038/s41467-022-31853-9</em></p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Researchers have designed smart, colour-controllable white light devices from quantum dots 鈥 tiny semiconductors just a few billionths of a metre in size 鈥 which are more efficient and have better colour saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">This research opens the way for a wide variety of new human-responsive lighting environments</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Gehan Amaratunga</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.gettyimages.co.uk/detail/photo/long-exposure-light-painting-photography-curvy-royalty-free-image/1182259805?adppopup=true" target="_blank">Yaorusheng via Getty Images</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Long exposure light painting </div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br />&#13; 探花直播text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified.聽 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 03 Aug 2022 09:00:00 +0000 sc604 233631 at Scientists develop fully woven, smart display /research/news/scientists-develop-fully-woven-smart-display <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/flexdisplays.jpg?itok=Ucb5aM0h" alt="" title="Credit: None" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>An international team of scientists have produced a fully woven smart textile display that integrates active electronic, sensing, energy and photonic functions. 探花直播functions are embedded directly into the fibres and yarns, which are manufactured using textile-based industrial processes.</p> <p> 探花直播researchers, led by the 探花直播 of Cambridge, say their approach could lead to applications that sound like sci-fi: curtains that are also TVs, energy-harvesting carpets, and interactive, self-powered clothing and fabrics.</p> <p>This is the first time that a scalable large-area complex system has been integrated into textiles using an entirely fibre-based manufacturing approach. Their <a href="https://www.nature.com/articles/s41467-022-28459-6">results</a> are reported in the journal <em>Nature Communications</em>.</p> <p>Despite recent progress in the development of smart textiles, their functionality, dimensions and shapes are limited by current manufacturing processes.</p> <p>Integrating specialised fibres into textiles through conventional weaving or knitting processes means they could be incorporated into everyday objects, which opens up a huge range of potential applications. However, to date, the manufacturing of these fibres has been size limited, or the technology has not been compatible with textiles and the weaving process.</p> <p>To make the technology compatible with weaving, the researchers coated each fibre component with materials that can withstand enough stretching so they can be used on textile manufacturing equipment. 探花直播team also braided some of the fibre-based components to improve their reliability and durability. Finally, they connected multiple fibre components together using conductive adhesives and laser welding techniques.</p> <p>Using these techniques together, they were able to incorporate multiple functionalities into a large piece of woven fabric with standard, scalable textile manufacturing processes.</p> <p> 探花直播resulting fabric can operate as a display, monitor various inputs, or store energy for later use. 探花直播fabric can detect radiofrequency signals, touch, light and temperature. It can also be rolled up, and because it鈥檚 made using commercial textile manufacturing techniques, large rolls of functional fabric could be made this way.</p> <p> 探花直播researchers say their prototype display paves the way to next-generation e-textile applications in sectors such as smart and energy-efficient buildings that can generate and store their own energy, Internet of Things (IoT), distributed sensor networks and interactive displays that are flexible and wearable when integrated with fabrics.</p> <p>鈥淥ur approach is built on the convergence of micro and nanotechnology, advanced displays, sensors, energy and technical textile manufacturing,鈥 said Professor Jong min Kim, from Cambridge鈥檚 Department of Engineering, who co-led the research with Dr Luigi Occhipinti and Professor Manish Chhowalla. 鈥淭his is a step towards the full exploitation of sustainable, convenient e-fibres and e-textiles in daily applications. And it鈥檚 only the beginning.鈥</p> <p>鈥淏y integrating fibre-based electronics, photonic, sensing and energy functionalities, we can achieve a whole new class of smart devices and systems,鈥 said Occhipinti, also from Cambridge鈥檚 Department of Engineering. 鈥淏y unleashing the full potential of textile manufacturing, we could soon see smart and energy-autonomous Internet of Things devices that are seamlessly integrated into everyday objects and many other sector applications.鈥</p> <p> 探花直播researchers are working with European collaborators to make the technology sustainable and useable for everyday objects. They are also working to integrate sustainable materials as fibre components, providing a new class of energy textile systems. Their flexible and functional smart fabric could eventually be made into batteries, supercapacitors, solar panels and other devices.</p> <p> 探花直播research was funded in part by the European Commission and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).</p> <p><em><strong>Reference:</strong><br /> HW聽Choi et al. <a href="https://www.nature.com/articles/s41467-022-28459-6">鈥楽mart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications</a>.鈥 Nature Communications (2022). DOI: 10.1038/s41467-022-28459-6</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Researchers have developed a 46-inch (116cm) woven display with smart sensors, energy harvesting and storage integrated directly into the fabric.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">By integrating fibre-based electronics, photonic, sensing and energy functionalities, we can achieve a whole new class of smart devices and systems</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Luigi Occhipinti</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> 探花直播text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright 漏 探花直播 of Cambridge and licensors/contributors as identified.聽 All rights reserved. We make our image and video content available in a number of ways 鈥 as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 10 Feb 2022 13:17:14 +0000 sc604 229821 at