ֱ̽ of Cambridge - Okinawa Institute of Science and Technology Graduate ֱ̽ (OIST) /taxonomy/external-affiliations/okinawa-institute-of-science-and-technology-graduate-university-oist en Secret to treating ‘Achilles’ heel’ of alternatives to silicon solar panels revealed /research/news/secret-to-treating-achilles-heel-of-alternatives-to-silicon-solar-panels-revealed <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/30529803866-4e39c35522-o.jpg?itok=ZphQmyFR" alt="Solar panels" title="Solar panels, Credit: Alachua County" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽researchers used a combination of techniques to mimic the process of aging under sunlight and observe changes in the materials at the nanoscale, helping them gain new insights into the materials, which also show potential for optoelectronic applications such as energy-efficient LEDs and X-ray detectors, but are limited in their longevity.</p> <p>Their <a href="https://www.nature.com/articles/s41586-022-04872-1">results</a>, reported in the journal <em>Nature</em>, could significantly accelerate the development of long-lasting, commercially available perovskite photovoltaics.</p> <p>Perovksites are abundant and much cheaper to process than crystalline silicon. They can be prepared in liquid ink that is simply printed to produce a thin film of the material.</p> <p>While the overall energy output of perovskite solar cells can often meet or – in the case of multi-layered ‘tandem’ devices – exceed that achievable with traditional silicon photovoltaics, the limited longevity of the devices is a key barrier to their commercial viability.</p> <p>A typical silicon solar panel, like those you might see on the roof of a house, typically lasts about 20-25 years without significant performance losses.</p> <p>Because perovskite devices are much cheaper to produce, they may not need to have as long a lifetime as their silicon counterparts to enter some markets. But to fulfil their ultimate potential in realising widespread decarbonisation, cells will need to operate for at least a decade or more. Researchers and manufacturers have yet to develop a perovskite device with similar stability to silicon cells.</p> <p>Now, researchers at the ֱ̽ of Cambridge and the Okinawa Institute of Science and Technology (OIST) in Japan, have discovered the secret to treating the ‘Achilles heel’ of perovskites.</p> <p>Using high spatial-resolution techniques, in collaboration with the Diamond Light Source synchrotron facility and its electron Physical Sciences Imaging Centre (ePSIC) in Oxfordshire, and the Department of Materials Science and Metallurgy in Cambridge, the team was able to observe the nanoscale properties of these thin films and how they change over time under solar illumination.</p> <p><a href="https://www.ceb.cam.ac.uk/news/templating-approach-stabilises-ideal-material-alternative-solar-cells">Previous work</a> by the team using similar techniques has shone light on the defects that cause deficiencies in the performance of perovskite photovoltaics – so-called carrier traps.</p> <p>“Illuminating the perovskite films over time, simulating the aging of solar cell devices, we find that the most interesting dynamics are occurring at these nanoscopic trap clusters,” said co-author Dr Stuart Macpherson from Cambridge’s Cavendish Laboratory.</p> <p>“We now know that the changes we see are related to photodegradation of the films. As a result, efficiency-limiting carrier traps can now be directly linked to the equally crucial issue of solar cell longevity.”</p> <p>“It’s pretty exciting,” said co-author Dr Tiarnan Doherty, from Cambridge’s Department of Chemical Engineering and Biotechnology, and Murray Edwards College, “because it suggests that if you can address the formation of these surface traps, then you will simultaneously improve performance and the stability of the devices over time.”</p> <p>By tuning the chemical composition, and how the perovskite film forms, in preparing the devices, the researchers have shown that it’s possible to control how many of these detrimental phases form and, by extension, how long the device will last.</p> <p>“ ֱ̽most stable devices seem to be serendipitously lowering the density of detrimental phases through subtle compositional and structural modifications,” said Doherty. “We’re hoping that this paper reveals a more rational, targeted approach for doing this and achieving the highest performing devices operating with maximal stability.”</p> <p> ֱ̽group is optimistic that their latest findings will bring us closer still to the first commercially available perovskite photovoltaic devices.</p> <p>“Perovskite solar cells are on the cusp of commercialisation, with the first production lines already producing modules,” said Dr Sam Stranks from Cambridge’s Department of Chemical Engineering and Biotechnology, who led the research.</p> <p>“We now understand that any residual unwanted phases – even tiny nanoscale pockets remaining from the processing of the cells – will be bad news for the longevity of perovskite solar cells. ֱ̽manufacturing processes need to incorporate careful tuning of the structure and composition across a large area to eliminate any trace of these unwanted phases – even more careful control than is widely thought for these materials. This is a great example of fundamental science directly guiding scaled manufacturing.”</p> <p>“It has been very satisfying to see the approaches that we've developed at OIST and Cambridge over the past several years provide direct visuals of these tiny residual unwanted phases, and how they change over time,” said co-author Dr Keshav Dani of OIST’s <a href="https://groups.oist.jp/fsu">Femtosecond Spectroscopy Unit</a>. “ ֱ̽hope remains that these techniques will continue to reveal the performance limiting aspects of photovoltaic devices, as we work towards studying operational devices.”</p> <p>“Another strength of perovskite devices is that they can be made in countries where there’s no existing infrastructure for processing monocrystalline silicon,” said Macpherson. “Silicon solar cells are cheap in the long term but require a substantial initial capital outlay to begin processing. But for perovskites, because they can be solution-processed and printed so easily, using far less material, you remove that initial cost. They offer a viable option for low- and middle-income countries looking to transition to solar energy.”</p> <p><em><strong>Reference:</strong><br /> Samuel Stranks et al. '<a href="https://www.nature.com/articles/s41586-022-04872-1">Local Nanoscale Phase Impurities are Degradation Sites in Halide Perovskites</a>.' Nature (2022). DOI: 10.1038/s41586-022-04872-1</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A team of researchers from the UK and Japan has found that the tiny defects which limit the efficiency of perovskites – cheaper alternative materials for solar cells – are also responsible for structural changes in the material that lead to degradation.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">Perovskites offer a viable option for low- and middle-income countries looking to transition to solar energy</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Stuart MacPherson</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.flickr.com/photos/66143513@N03/30529803866" target="_blank">Alachua County</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Solar panels</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/public-domain">Public Domain</a></div></div></div> Tue, 24 May 2022 15:00:00 +0000 erh68 232361 at Mystery of high-performing solar cell materials revealed in stunning clarity /research/news/mystery-of-high-performing-solar-cell-materials-revealed-in-stunning-clarity <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/electronfunnel.jpg?itok=z-F4VpzC" alt="Artistic representation of electrons funneling into high quality areas of perovskite material" title="Artistic representation of electrons funneling into high quality areas of perovskite material, Credit: Alex T at Ella Maru Studios" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽most commonly used material for producing solar panels is crystalline silicon, but achieving efficient energy conversion requires an energy-intensive and time-consuming production process to create a highly ordered wafer structure.</p> <p>In the last decade, perovskite materials have emerged as promising alternatives to silicon.</p> <p> ֱ̽lead salts used to make perovskites are much more abundant and cheaper to produce than crystalline silicon, and they can be prepared in liquid ink that is simply printed to produce a film of the material. They also show great potential for other applications, such as energy-efficient light-emitting diodes (LEDs) and X-ray detectors.</p> <p> ֱ̽performance of perovskites is surprising. ֱ̽typical model for an excellent semiconductor is a highly ordered structure, but the array of different chemical elements in perovskites creates a much ‘messier’ landscape.</p> <p>This messiness causes defects in the material that lead to tiny ‘traps’, which typically reduce performance. But despite the presence of these defects, perovskite materials still show efficiency levels comparable to their silicon alternatives.   </p> <p>In fact, <a href="https://www.ceb.cam.ac.uk/news/new-world-disorder-efficient-semiconductors">earlier research</a> by the same team behind the current work showed the disordered structure can actually increase the performance of perovskite optoelectronics, and their latest work seeks to explain why.  </p> <p>Combining a series of new microscopy techniques, the group present a complete picture of the nanoscale chemical, structural and optoelectronic landscape of these materials, that reveals the complex interactions between these competing factors and ultimately, shows which comes out on top.</p> <p>“What we see is that we have two forms of disorder happening in parallel,” said first author Kyle Frohna from Cambridge’s Department of Chemical Engineering and Biotechnology (CEB). “ ֱ̽electronic disorder associated with the defects that reduce performance, and then the spatial chemical disorder that seems to improve it.</p> <p>“And what we’ve found is that the chemical disorder – the ‘good’ disorder in this case – mitigates the ‘bad’ disorder from the defects by funnelling the charge carriers away from these traps that they might otherwise get caught in.” </p> <p>In collaboration with researchers from the Cavendish Laboratory, the Diamond Light Source synchrotron facility in Didcot, and the Okinawa Institute of Science and Technology in Japan, the researchers used several different microscopic techniques to look at the same regions in the perovskite film. They could then compare the results from all these methods to present the full picture of what’s happening at a nanoscale level in these materials.</p> <p> ֱ̽findings will allow researchers to further refine how perovskite solar cells are made in order to maximise efficiency.</p> <p>“We have visualised and given reasons why we can call these materials defect tolerant,” said co-author Miguel Anaya, also from CEB. “This methodology enables new routes to optimise them at the nanoscale to perform better for a targeted application. Now, we can look at other types of perovskites that are not only good for solar cells but also for LEDs or detectors and understand their working principles.”</p> <p>“Through these visualisations, we now much better understand the nanoscale landscape in these fascinating semiconductors – the good, the bad and the ugly,” said Dr Sam Stranks from CEB, who led the research. “These results explain how the empirical optimisation of these materials by the field has driven these mixed composition perovskites to such high performances. But it has also revealed blueprints for design of new semiconductors that may have similar attributes – where disorder can be exploited to tailor performance.”</p> <p><em><strong>Reference:</strong><br /> Kyle Frohna et al ‘<a href="https://www.nature.com/articles/s41565-021-01019-7">Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells</a>.’ Nature Nanotechnology (2021) DOI: 10.1038/s41565-021-01019-7</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Researchers have visualised, for the first time, why perovskites – materials which could replace silicon in next-generation solar cells - are seemingly so tolerant of defects in their structure. ֱ̽<a href="https://www.nature.com/articles/s41565-021-01019-7">findings</a>, led by researchers from the ֱ̽ of Cambridge, are published in the journal <em>Nature Nanotechnology</em>.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">We now much better understand the nanoscale landscape in these fascinating semiconductors – the good, the bad and the ugly</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Sam Stranks</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">Alex T at Ella Maru Studios</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Artistic representation of electrons funneling into high quality areas of perovskite material</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Mon, 22 Nov 2021 15:38:18 +0000 erh68 228261 at Shedding light on dark traps /research/news/shedding-light-on-dark-traps <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/artworkaw.png?itok=KIDKBamb" alt="Perovskites" title="Perovskites, Credit: Andrew Winchester" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>A multi-institutional collaboration, co-led by scientists at the ֱ̽ of Cambridge and Okinawa Institute of Science and Technology Graduate ֱ̽ (OIST), has identified the source of efficiency-limiting defects in potential materials for next-generation solar cells and LEDs.</p>&#13; &#13; <p><span data-contrast="none" xml:lang="EN-US">In the last decade, perovskites – a diverse range of materials with a specific crystal structure – have emerged as promising alternatives to silicon solar cells, as they are cheaper and greener to manufacture, while achieving a comparable level of efficiency.</span> </p>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{18}" paraid="2101367512"><span data-contrast="none" xml:lang="EN-US">However, perovskites</span><span data-contrast="none" xml:lang="EN-US"> still </span><span data-contrast="none" xml:lang="EN-US">show</span> <span data-contrast="none" xml:lang="EN-US">significant</span><span data-contrast="none" xml:lang="EN-US"> performance losses and instabilities</span><span data-contrast="none" xml:lang="EN-US">, particularly in the specific materials that promise the highest ultimate efficiency</span><span data-contrast="none" xml:lang="EN-US">. </span><span data-contrast="none" xml:lang="EN-US">Most</span><span data-contrast="none" xml:lang="EN-US"> research to date has focused on ways to remove </span><span data-contrast="none" xml:lang="EN-US">these losses</span><span data-contrast="none" xml:lang="EN-US">, but </span><span data-contrast="none" xml:lang="EN-US">their actual physical causes remain unknown</span><span data-contrast="none" xml:lang="EN-US">. </span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{56}" paraid="933817179"><span data-contrast="auto" xml:lang="EN-US">Now, i</span><span data-contrast="auto" xml:lang="EN-US">n a <a href="https://www.nature.com/articles/s41586-020-2184-1">paper</a> published in </span><em><span data-contrast="auto" xml:lang="EN-US">Nature</span></em><span data-contrast="auto" xml:lang="EN-US">, researchers from Dr</span><span data-contrast="auto" xml:lang="EN-US"> Sam </span><span data-contrast="auto" xml:lang="EN-US">Stranks’</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US"> group at Cambridge</span><span data-contrast="auto" xml:lang="EN-US">’s</span><span data-contrast="auto" xml:lang="EN-US"> Department of Chemical Engineering and Biotechnology</span><span data-contrast="auto" xml:lang="EN-US"> and Cavendish Laboratory</span><span data-contrast="auto" xml:lang="EN-US">, </span><span data-contrast="auto" xml:lang="EN-US">and </span><span data-contrast="auto" xml:lang="EN-US">Professor</span><span data-contrast="auto" xml:lang="EN-US"> Keshav Dani’s </span><span data-contrast="auto" xml:lang="EN-US">Femtosecond Spectroscopy Unit</span><span data-contrast="auto" xml:lang="EN-US"> at</span><span data-contrast="auto" xml:lang="EN-US"> OIST</span><span data-contrast="auto" xml:lang="EN-US"> in Japan, </span><span data-contrast="auto" xml:lang="EN-US">identify the source of the problem. Their discovery could </span><span data-contrast="auto" xml:lang="EN-US">streamline</span><span data-contrast="auto" xml:lang="EN-US"> efforts to increase </span><span data-contrast="auto" xml:lang="EN-US">the </span><span data-contrast="auto" xml:lang="EN-US">efficiency</span><span data-contrast="auto" xml:lang="EN-US"> of perovskites</span><span data-contrast="auto" xml:lang="EN-US">, bringing </span><span data-contrast="auto" xml:lang="EN-US">them </span><span data-contrast="auto" xml:lang="EN-US">closer to mass-market production. </span>   </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{124}" paraid="1963215236"><span data-contrast="none" xml:lang="EN-US">Perovskite materials are much more tolerant of defects in their structure than silicon solar cells, and previous research carried out by </span><span data-contrast="none" xml:lang="EN-US">Stranks’</span><span data-contrast="none" xml:lang="EN-US">s</span><span data-contrast="none" xml:lang="EN-US"> group found that to a certain extent, </span><span data-contrast="auto" xml:lang="EN-US">some heterogeneity in their </span><span data-contrast="auto" xml:lang="EN-US">composition</span><span data-contrast="auto" xml:lang="EN-US"> actually improves their </span><span data-contrast="auto" xml:lang="EN-US">performance as solar c</span><span data-contrast="auto" xml:lang="EN-US">ells and light-emitters</span><span data-contrast="none" xml:lang="EN-US">. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{153}" paraid="687425960"><span data-contrast="none" xml:lang="EN-US">However, the current limitation of perovskite materials is the presence of a '</span><span data-contrast="none" xml:lang="EN-US">deep trap' caused by a defect, or minor blemish, in the material</span><span data-contrast="none" xml:lang="EN-US">.</span> <span data-contrast="auto" xml:lang="EN-US">These are areas in the material where </span>energised charge <span data-contrast="auto" xml:lang="EN-US">carriers can get stuck and recombine, losing their energy to heat, rather than converting </span><span data-contrast="auto" xml:lang="EN-US">it</span><span data-contrast="auto" xml:lang="EN-US"> into useful electricity or light. This recombination process can have a significant impact on the efficiency</span><span data-contrast="auto" xml:lang="EN-US"> and stability</span><span data-contrast="auto" xml:lang="EN-US"> of solar panels and LEDs.</span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{185}" paraid="1196703816"><span data-contrast="auto" xml:lang="EN-US">Until now, very little was known about the cause of these traps</span><span data-contrast="auto" xml:lang="EN-US">, in part because they appear to behave differently to traps in traditional solar cell materials</span><span data-contrast="auto" xml:lang="EN-US">. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{023bc3ca-ebcf-42b0-8515-94c921894407}{195}" paraid="104002300"><span data-contrast="auto" xml:lang="EN-US">In 2015</span><span data-contrast="auto" xml:lang="EN-US">,</span> <span data-contrast="auto" xml:lang="EN-US">Stranks</span> <span data-contrast="auto" xml:lang="EN-US">and colleagues </span><span data-contrast="auto" xml:lang="EN-US">published</span> <span data-contrast="auto" xml:lang="EN-US">a paper in </span><em><a href="https://www.science.org/doi/10.1126/science.aaa5333" rel="noreferrer noopener" target="_blank"><span data-contrast="none" xml:lang="EN-US"><span data-ccp-charstyle="Hyperlink">Science</span></span></a></em> l<span data-contrast="auto" xml:lang="EN-US">ooking</span><span data-contrast="auto" xml:lang="EN-US"> at the luminescence of </span><span data-contrast="auto" xml:lang="EN-US">perovskites</span><span data-contrast="auto" xml:lang="EN-US">, which </span><span data-contrast="auto" xml:lang="EN-US">reveals</span><span data-contrast="auto" xml:lang="EN-US"> how good they are</span><span data-contrast="auto" xml:lang="EN-US"> at absorbing or emitting light</span><span data-contrast="auto" xml:lang="EN-US">. </span><span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">W</span><span data-contrast="auto" xml:lang="EN-US">e found that </span><span data-contrast="auto" xml:lang="EN-US">the material</span><span data-contrast="auto" xml:lang="EN-US"> was very heterogeneous</span><span data-contrast="auto" xml:lang="EN-US">;</span><span data-contrast="auto" xml:lang="EN-US"> y</span><span data-contrast="auto" xml:lang="EN-US">ou had quite</span><span data-contrast="auto" xml:lang="EN-US"> large regions that were bright and</span><span data-contrast="auto" xml:lang="EN-US"> luminescent and other regions that were really dark</span><span data-contrast="auto" xml:lang="EN-US">,” </span><span data-contrast="auto" xml:lang="EN-US">said</span><span data-contrast="auto" xml:lang="EN-US"> Stranks</span>. <span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">These dark regions correspond to power losses in solar cells or LEDs.</span> <span data-contrast="auto" xml:lang="EN-US">But</span> <span data-contrast="auto" xml:lang="EN-US">what was causing th</span><span data-contrast="auto" xml:lang="EN-US">e power loss</span> <span data-contrast="auto" xml:lang="EN-US">was always a mystery</span><span data-contrast="auto" xml:lang="EN-US">, </span><span data-contrast="auto" xml:lang="EN-US">especially because</span> <span data-contrast="auto" xml:lang="EN-US">perovskites</span><span data-contrast="auto" xml:lang="EN-US"> are otherwise so defect</span><span data-contrast="auto" xml:lang="EN-US">-</span><span data-contrast="auto" xml:lang="EN-US">tolerant</span><span data-contrast="auto" xml:lang="EN-US">.</span><span data-contrast="auto" xml:lang="EN-US">”</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{fe80beb4-a05b-43d6-91d8-56a81b5644aa}{59}" paraid="706121782"><span data-contrast="auto" xml:lang="EN-US">Due to limitations of standard imaging techniques, the group </span><span data-contrast="auto" xml:lang="EN-US">couldn’t</span><span data-contrast="auto" xml:lang="EN-US"> tell if the darker areas were caused by one, large </span><span data-contrast="auto" xml:lang="EN-US">trap site</span><span data-contrast="auto" xml:lang="EN-US">, or many smaller traps, making it difficult to establish why they were forming</span><span data-contrast="auto" xml:lang="EN-US"> only</span><span data-contrast="auto" xml:lang="EN-US"> in certain regions</span><span data-contrast="auto" xml:lang="EN-US">. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{fe80beb4-a05b-43d6-91d8-56a81b5644aa}{79}" paraid="320318876">In 2017, <span data-contrast="auto" xml:lang="EN-US">Dani’s group at OIST </span><span data-contrast="auto" xml:lang="EN-US">made</span> <span data-contrast="auto" xml:lang="EN-US">a </span><span data-contrast="auto" xml:lang="EN-US"><a href="https://www.nature.com/articles/nnano.2016.183">movie</a> of how electrons </span><span data-contrast="auto" xml:lang="EN-US">behave</span> <span data-contrast="auto" xml:lang="EN-US">in </span><span data-contrast="auto" xml:lang="EN-US">semiconductors</span><span data-contrast="auto" xml:lang="EN-US"> after absorbing light. “</span><span data-contrast="auto" xml:lang="EN-US">You can learn a lot from being able to see how charges move in a material or device after shining li</span><span data-contrast="auto" xml:lang="EN-US">ght</span><span data-contrast="auto" xml:lang="EN-US">. </span><span data-contrast="auto" xml:lang="EN-US">For example, you c</span><span data-contrast="auto" xml:lang="EN-US">an</span><span data-contrast="auto" xml:lang="EN-US"> see where they might be getting trapped,”</span> <span data-contrast="auto" xml:lang="EN-US">said Dani</span><span data-contrast="auto" xml:lang="EN-US">. </span><span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">However, </span><span data-contrast="auto" xml:lang="EN-US">these </span><span data-contrast="auto" xml:lang="EN-US">charges </span><span data-contrast="auto" xml:lang="EN-US">are hard to visualise as they </span><span data-contrast="auto" xml:lang="EN-US">move very fast</span><span data-contrast="auto" xml:lang="EN-US"> – on the timescale of a millionth of a billionth of a second;</span><span data-contrast="auto" xml:lang="EN-US"> and over very short distances</span><span data-contrast="auto" xml:lang="EN-US"> – on the length</span> <span data-contrast="auto" xml:lang="EN-US">scale of a</span><span data-contrast="auto" xml:lang="EN-US"> billionth of a </span>met<span data-contrast="auto" xml:lang="EN-US">r</span><span data-contrast="auto" xml:lang="EN-US">e</span><span data-contrast="auto" xml:lang="EN-US">.</span><span data-contrast="auto" xml:lang="EN-US">”</span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{fe80beb4-a05b-43d6-91d8-56a81b5644aa}{172}" paraid="778369858"><span data-contrast="auto" xml:lang="EN-US">On hearing of </span><span data-contrast="auto" xml:lang="EN-US">Dani’s work</span><span data-contrast="auto" xml:lang="EN-US">, </span><span data-contrast="auto" xml:lang="EN-US">Stranks</span> reached out to see if they could <span data-contrast="auto" xml:lang="EN-US">work together to </span><span data-contrast="auto" xml:lang="EN-US">address </span><span data-contrast="auto" xml:lang="EN-US">the problem </span><span data-contrast="auto" xml:lang="EN-US">visuali</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US">ing</span><span data-contrast="auto" xml:lang="EN-US"> the dark regions in</span><span data-contrast="auto" xml:lang="EN-US"> perovskites</span><span data-contrast="auto" xml:lang="EN-US">. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{fe80beb4-a05b-43d6-91d8-56a81b5644aa}{208}" paraid="1035874157"><span data-contrast="auto" xml:lang="EN-US"> ֱ̽team at OIST used a technique called </span><span data-contrast="auto" xml:lang="EN-US">photoemission electron microscopy</span><span data-contrast="auto" xml:lang="EN-US"> (PEEM)</span> <span data-contrast="auto" xml:lang="EN-US">for the first time on perovskites</span><span data-contrast="auto" xml:lang="EN-US">, </span><span data-contrast="auto" xml:lang="EN-US">where they probed the material with ultraviolet light and built up an image based on how the </span><span data-contrast="auto" xml:lang="EN-US">emitted </span><span data-contrast="auto" xml:lang="EN-US">electrons scattered</span><span data-contrast="auto" xml:lang="EN-US">. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{fe80beb4-a05b-43d6-91d8-56a81b5644aa}{233}" paraid="485577356"><span data-contrast="auto" xml:lang="EN-US">When they looked at the material, t</span><span data-contrast="auto" xml:lang="EN-US">hey</span> <span data-contrast="auto" xml:lang="EN-US">found</span><span data-contrast="auto" xml:lang="EN-US"> that the</span> <span data-contrast="auto" xml:lang="EN-US">dark regions contained </span><span data-contrast="auto" xml:lang="EN-US">traps</span><span data-contrast="auto" xml:lang="EN-US">,</span> <span data-contrast="auto" xml:lang="EN-US">around</span><span data-contrast="auto" xml:lang="EN-US"> 10-100 nanometers in length, </span><span data-contrast="auto" xml:lang="EN-US">which </span><span data-contrast="auto" xml:lang="EN-US">were clusters of smaller atomic-sized trap sites. These trap clusters were spread unevenly throughout the perovskite material, explaining </span><span data-contrast="auto" xml:lang="EN-US">the heterogeneous luminescence seen in </span>Stranks’s earlier research<span data-contrast="auto" xml:lang="EN-US">.</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{7fdb5bd9-9ab7-4d69-a0fd-102d4787577c}{30}" paraid="209746868"><span data-contrast="auto" xml:lang="EN-US">When the researchers overlaid images of the trap sites onto images that showed the crystal grains of the perovskite material, they found that the trap clusters only formed at specific places, at the boundaries between certain grains.</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{7fdb5bd9-9ab7-4d69-a0fd-102d4787577c}{40}" paraid="662446471"><span data-contrast="auto" xml:lang="EN-US">To </span><span data-contrast="auto" xml:lang="EN-US">understand why this </span><span data-contrast="auto" xml:lang="EN-US">only </span><span data-contrast="auto" xml:lang="EN-US">occurred at certain grain boundaries</span><span data-contrast="auto" xml:lang="EN-US">, the group</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US"> worked </span><span data-contrast="auto" xml:lang="EN-US">together </span><span data-contrast="auto" xml:lang="EN-US">with Professor Paul Midgley’s team from </span><span data-contrast="auto" xml:lang="EN-US">Cambridge’s </span><span data-contrast="auto" xml:lang="EN-US">Department of M</span><span data-contrast="auto" xml:lang="EN-US">a</span><span data-contrast="auto" xml:lang="EN-US">terials Science and Metallurgy</span><span data-contrast="auto" xml:lang="EN-US"> using </span><span data-contrast="auto" xml:lang="EN-US">a technique called</span> <span data-contrast="auto" xml:lang="EN-US">scanning electron </span><span data-contrast="auto" xml:lang="EN-US">diffraction </span><span data-contrast="auto" xml:lang="EN-US">to </span><span data-contrast="auto" xml:lang="EN-US">create detailed images of the perovskite crystal structure</span><span data-contrast="auto" xml:lang="EN-US">.</span> <span data-contrast="auto" xml:lang="EN-US"> ֱ̽project</span><span data-contrast="auto" xml:lang="EN-US"> team made use</span><span data-contrast="auto" xml:lang="EN-US"> of</span><span data-contrast="auto" xml:lang="EN-US"> the</span><span data-contrast="auto" xml:lang="EN-US"> electron</span><span data-contrast="auto" xml:lang="EN-US"> microscopy setup at the</span><span data-contrast="auto" xml:lang="EN-US"> </span><span data-contrast="auto" xml:lang="EN-US">e</span><span data-contrast="auto" xml:lang="EN-US">PSIC</span> <span data-contrast="auto" xml:lang="EN-US">facility </span><span data-contrast="auto" xml:lang="EN-US">at the Diamond Light Source Synchrotron</span><span data-contrast="auto" xml:lang="EN-US">,</span> <span data-contrast="auto" xml:lang="EN-US">which has </span><span data-contrast="auto" xml:lang="EN-US">specialised</span><span data-contrast="auto" xml:lang="EN-US"> equipment for</span><span data-contrast="auto" xml:lang="EN-US"> imaging </span><span data-contrast="auto" xml:lang="EN-US">beam-sensitive </span><span data-contrast="auto" xml:lang="EN-US">materials</span><span data-contrast="auto" xml:lang="EN-US">, like perovskites</span><span data-contrast="auto" xml:lang="EN-US">.</span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{7fdb5bd9-9ab7-4d69-a0fd-102d4787577c}{135}" paraid="527721859"><span data-contrast="auto" xml:lang="EN-US">“Because </span><span data-contrast="auto" xml:lang="EN-US">these materials are</span> <span data-contrast="auto" xml:lang="EN-US">very </span><span data-contrast="auto" xml:lang="EN-US">beam</span><span data-contrast="auto" xml:lang="EN-US">-</span><span data-contrast="auto" xml:lang="EN-US">sensitive,</span><span data-contrast="auto" xml:lang="EN-US"> typical techniques that you would use</span><span data-contrast="auto" xml:lang="EN-US"> to probe local crystal structure on these length scales</span> <span data-contrast="auto" xml:lang="EN-US">will</span><span data-contrast="auto" xml:lang="EN-US"> quite quickly</span><span data-contrast="auto" xml:lang="EN-US"> change </span><span data-contrast="auto" xml:lang="EN-US">the </span><span data-contrast="auto" xml:lang="EN-US">material as you're looking at it</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> which can make interpreting the data very difficult,</span><span data-contrast="auto" xml:lang="EN-US">” said</span> <span data-contrast="auto" xml:lang="EN-US">Tiarnan </span><span data-contrast="auto" xml:lang="EN-US">Doherty</span><span data-contrast="auto" xml:lang="EN-US">, a PhD student in</span> <span data-contrast="auto" xml:lang="EN-US">Stranks</span><span data-contrast="auto" xml:lang="EN-US">’</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US"> group and </span><span data-contrast="auto" xml:lang="EN-US">co-l</span><span data-contrast="auto" xml:lang="EN-US">ead author of the study</span><span data-contrast="auto" xml:lang="EN-US">.</span> <span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">Instead, we were able to use</span><span data-contrast="auto" xml:lang="EN-US"> very low exposure doses and </span><span data-contrast="auto" xml:lang="EN-US">therefore </span><span data-contrast="auto" xml:lang="EN-US">prevent</span><span data-contrast="auto" xml:lang="EN-US"> damage. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{7fdb5bd9-9ab7-4d69-a0fd-102d4787577c}{219}" paraid="1126200613"><span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">From the </span><span data-contrast="auto" xml:lang="EN-US">work at OIST</span><span data-contrast="auto" xml:lang="EN-US">, w</span><span data-contrast="auto" xml:lang="EN-US">e knew where the </span><span data-contrast="auto" xml:lang="EN-US">trap</span><span data-contrast="auto" xml:lang="EN-US"> clusters</span><span data-contrast="auto" xml:lang="EN-US"> w</span><span data-contrast="auto" xml:lang="EN-US">ere</span><span data-contrast="auto" xml:lang="EN-US"> located</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> and at </span><span data-contrast="auto" xml:lang="EN-US">ePSIC</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> we </span><span data-contrast="auto" xml:lang="EN-US">scanned</span> <span data-contrast="auto" xml:lang="EN-US">around </span><span data-contrast="auto" xml:lang="EN-US">those </span><span data-contrast="auto" xml:lang="EN-US">same area</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US"> to see</span><span data-contrast="auto" xml:lang="EN-US"> the local structure.</span> <span data-contrast="auto" xml:lang="EN-US">W</span><span data-contrast="auto" xml:lang="EN-US">e were</span><span data-contrast="auto" xml:lang="EN-US"> then</span><span data-contrast="auto" xml:lang="EN-US"> able to quickly pinpoint unexpected variations in the crystal</span><span data-contrast="auto" xml:lang="EN-US"> structure</span><span data-contrast="auto" xml:lang="EN-US"> around the </span><span data-contrast="auto" xml:lang="EN-US">trap </span><span data-contrast="auto" xml:lang="EN-US">clusters</span><span data-contrast="auto" xml:lang="EN-US">.</span><span data-contrast="auto" xml:lang="EN-US">”</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{e66dcee6-bf9d-4ecf-ac71-d306e29d845e}{40}" paraid="520693684"><span data-contrast="auto" xml:lang="EN-US">The</span><span data-contrast="auto" xml:lang="EN-US"> group discovered that the trap clusters </span><span data-contrast="auto" xml:lang="EN-US">only formed</span> <span data-contrast="auto" xml:lang="EN-US">at junctions where an area of the material with slightly distorted structure met an area with pristine structure.</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{e66dcee6-bf9d-4ecf-ac71-d306e29d845e}{58}" paraid="1152744103"><span data-contrast="auto" xml:lang="EN-US">“In perovskites</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> we have regular mosaic grains of material and m</span><span data-contrast="auto" xml:lang="EN-US">ost of t</span><span data-contrast="auto" xml:lang="EN-US">he grains are nice and pristine – the structure we would expect,” </span><span data-contrast="auto" xml:lang="EN-US">said</span><span data-contrast="auto" xml:lang="EN-US"> Stranks</span>. <span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">But e</span><span data-contrast="auto" xml:lang="EN-US">very now </span><span data-contrast="auto" xml:lang="EN-US">and again</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> you get a</span><span data-contrast="auto" xml:lang="EN-US"> grain that's slightly distorted and the chemistry of that </span><span data-contrast="auto" xml:lang="EN-US">grain </span><span data-contrast="auto" xml:lang="EN-US">is inhomogeneous. W</span><span data-contrast="auto" xml:lang="EN-US">hat was really interesting and </span><span data-contrast="auto" xml:lang="EN-US">which initially confused us </span><span data-contrast="auto" xml:lang="EN-US">was that </span><span data-contrast="auto" xml:lang="EN-US">it's not </span><span data-contrast="auto" xml:lang="EN-US">the distorted grain</span><span data-contrast="auto" xml:lang="EN-US"> that's the trap</span><span data-contrast="auto" xml:lang="EN-US"> but</span><span data-contrast="auto" xml:lang="EN-US"> whe</span><span data-contrast="auto" xml:lang="EN-US">re</span><span data-contrast="auto" xml:lang="EN-US"> that </span><span data-contrast="auto" xml:lang="EN-US">grain meets a pristine grain; it's at that junction that the</span><span data-contrast="auto" xml:lang="EN-US"> traps </span><span data-contrast="auto" xml:lang="EN-US">cluster</span><span data-contrast="auto" xml:lang="EN-US">.</span><span data-contrast="auto" xml:lang="EN-US">”</span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{e66dcee6-bf9d-4ecf-ac71-d306e29d845e}{132}" paraid="756812077"><span data-contrast="auto" xml:lang="EN-US">With this understanding of the nature of the traps</span><span data-contrast="auto" xml:lang="EN-US">, </span><span data-contrast="auto" xml:lang="EN-US">the team</span> <span data-contrast="auto" xml:lang="EN-US">at OIST </span><span data-contrast="auto" xml:lang="EN-US">also u</span><span data-contrast="auto" xml:lang="EN-US">sed </span><span data-contrast="auto" xml:lang="EN-US">the</span><span data-contrast="auto" xml:lang="EN-US"> custom-buil</span><span data-contrast="auto" xml:lang="EN-US">t</span> <span data-contrast="auto" xml:lang="EN-US">PEEM</span><span data-contrast="auto" xml:lang="EN-US"> instrumentation</span><span data-contrast="auto" xml:lang="EN-US"> to</span> <span data-contrast="auto" xml:lang="EN-US">visualise the dynamics of the charge carrier trapping process happening in the perovskite material.</span> <span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">This was possible as o</span><span data-contrast="auto" xml:lang="EN-US">ne of the unique features of our PEEM setup is </span><span data-contrast="auto" xml:lang="EN-US">that it can</span> <span data-contrast="auto" xml:lang="EN-US">image</span> <span data-contrast="auto" xml:lang="EN-US">ultra</span><span data-contrast="auto" xml:lang="EN-US">fast processes</span><span data-contrast="auto" xml:lang="EN-US"> –</span><span data-contrast="auto" xml:lang="EN-US"> as short as femtoseconds</span><span data-contrast="auto" xml:lang="EN-US">,” said</span><span data-contrast="auto" xml:lang="EN-US"> Andrew Winchester, a PhD student </span><span data-contrast="auto" xml:lang="EN-US">in </span><span data-contrast="auto" xml:lang="EN-US">Dani</span><span data-contrast="auto" xml:lang="EN-US">’s</span><span data-contrast="auto" xml:lang="EN-US"> Unit, and </span><span data-contrast="auto" xml:lang="EN-US">co-</span><span data-contrast="auto" xml:lang="EN-US">lead author of this study</span><span data-contrast="auto" xml:lang="EN-US">. “</span><span data-contrast="auto" xml:lang="EN-US">We</span> <span data-contrast="auto" xml:lang="EN-US">found</span><span data-contrast="auto" xml:lang="EN-US"> that the trapping process was dominated by </span><span data-contrast="auto" xml:lang="EN-US">charge carriers</span><span data-contrast="auto" xml:lang="EN-US"> diffusing to the trap clusters.</span><span data-contrast="auto" xml:lang="EN-US">”</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{e66dcee6-bf9d-4ecf-ac71-d306e29d845e}{230}" paraid="2008039481"><span data-contrast="auto" xml:lang="EN-US">The</span><span data-contrast="auto" xml:lang="EN-US">se</span><span data-contrast="auto" xml:lang="EN-US"> discover</span><span data-contrast="auto" xml:lang="EN-US">ies</span> <span data-contrast="auto" xml:lang="EN-US">represent</span><span data-contrast="auto" xml:lang="EN-US"> a breakthrough in the quest to bring perovskites to the solar energy market. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{e66dcee6-bf9d-4ecf-ac71-d306e29d845e}{252}" paraid="2062211057"><span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">We</span><span data-contrast="auto" xml:lang="EN-US"> still</span><span data-contrast="auto" xml:lang="EN-US"> don't know exactly why </span><span data-contrast="auto" xml:lang="EN-US">the traps are</span><span data-contrast="auto" xml:lang="EN-US"> clustering there</span><span data-contrast="auto" xml:lang="EN-US">,</span> <span data-contrast="auto" xml:lang="EN-US">but </span><span data-contrast="auto" xml:lang="EN-US">we no</span><span data-contrast="auto" xml:lang="EN-US">w </span><span data-contrast="auto" xml:lang="EN-US">know</span><span data-contrast="auto" xml:lang="EN-US"> that they do form there, a</span><span data-contrast="auto" xml:lang="EN-US">nd </span><span data-contrast="auto" xml:lang="EN-US">seemingly </span><span data-contrast="auto" xml:lang="EN-US">only there</span><span data-contrast="auto" xml:lang="EN-US">,” </span><span data-contrast="auto" xml:lang="EN-US">said</span> <span data-contrast="auto" xml:lang="EN-US">Stranks</span>. <span data-contrast="auto" xml:lang="EN-US">“</span><span data-contrast="auto" xml:lang="EN-US">T</span><span data-contrast="auto" xml:lang="EN-US">hat's exciting because it means </span><span data-contrast="auto" xml:lang="EN-US">we</span><span data-contrast="auto" xml:lang="EN-US"> now </span><span data-contrast="auto" xml:lang="EN-US">know what to target to bring</span> <span data-contrast="auto" xml:lang="EN-US">up </span><span data-contrast="auto" xml:lang="EN-US">the performances </span><span data-contrast="auto" xml:lang="EN-US">of </span><span data-contrast="auto" xml:lang="EN-US">perovskite</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US">. W</span><span data-contrast="auto" xml:lang="EN-US">e need to ta</span><span data-contrast="auto" xml:lang="EN-US">rget those inhomogeneous phases or </span><span data-contrast="auto" xml:lang="EN-US">get rid of these junctions</span><span data-contrast="auto" xml:lang="EN-US"> in some way</span><span data-contrast="auto" xml:lang="EN-US">.</span><span data-contrast="auto" xml:lang="EN-US">”</span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{af800f0a-7ab9-42ae-b2c0-ddaecb6dc1bd}{83}" paraid="249110881"><span data-contrast="auto" xml:lang="EN-US">“ ֱ̽fact that charge carriers must first diffuse to the traps could also suggest other strategies to improve these devices,” said Dani. “Maybe we</span><span data-contrast="auto" xml:lang="EN-US"> could alter or control the arrangement of the trap clusters, without necessarily changing their average number, such that charge carriers are less likely to reach these defect sites</span><span data-contrast="auto" xml:lang="EN-US">.”</span>  </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{af800f0a-7ab9-42ae-b2c0-ddaecb6dc1bd}{110}" paraid="262231588"><span data-contrast="auto" xml:lang="EN-US">The </span><span data-contrast="auto" xml:lang="EN-US">team</span><span data-contrast="auto" xml:lang="EN-US">s</span><span data-contrast="auto" xml:lang="EN-US">’ </span><span data-contrast="auto" xml:lang="EN-US">research focused on one particular perovskite structure</span><span data-contrast="auto" xml:lang="EN-US">. </span><span data-contrast="auto" xml:lang="EN-US"> ֱ̽scientists</span><span data-contrast="auto" xml:lang="EN-US"> will now be investigating whether the cause of these trapping clusters is universal across </span><span data-contrast="auto" xml:lang="EN-US">other </span><span data-contrast="auto" xml:lang="EN-US">perovskite materials. </span> </p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{af800f0a-7ab9-42ae-b2c0-ddaecb6dc1bd}{134}" paraid="997349984"><span data-contrast="auto" xml:lang="EN-US">“Most of the progress in device performance has been </span><span data-contrast="auto" xml:lang="EN-US">trial and error </span><span data-contrast="auto" xml:lang="EN-US">and so far</span><span data-contrast="auto" xml:lang="EN-US">,</span> <span data-contrast="auto" xml:lang="EN-US">this has been quite an inefficient process</span><span data-contrast="auto" xml:lang="EN-US">,” </span><span data-contrast="auto" xml:lang="EN-US">said</span><span data-contrast="auto" xml:lang="EN-US"> Stranks</span>. “<span data-contrast="auto" xml:lang="EN-US">To date</span><span data-contrast="auto" xml:lang="EN-US">,</span><span data-contrast="auto" xml:lang="EN-US"> it really hasn't been driven by </span><span data-contrast="auto" xml:lang="EN-US">knowing a specific cause and </span><span data-contrast="auto" xml:lang="EN-US">systematically </span><span data-contrast="auto" xml:lang="EN-US">targeting that. </span><span data-contrast="auto" xml:lang="EN-US">This is one of the first breakthroughs </span><span data-contrast="auto" xml:lang="EN-US">that</span><span data-contrast="auto" xml:lang="EN-US"> will help us to use the fundamental science to</span> <span data-contrast="auto" xml:lang="EN-US">engineer more efficient devices</span><span data-contrast="auto" xml:lang="EN-US">.”</span> </p>&#13; &#13; <p paraeid="{af800f0a-7ab9-42ae-b2c0-ddaecb6dc1bd}{134}" paraid="997349984"><em><strong>Reference:</strong><br />&#13; Tiarnan A.S. Doherty et al. '<a href="https://www.nature.com/articles/s41586-020-2184-1">Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites</a>.' Nature (2020). DOI: 10.1038/s41586-020-2184-1</em></p>&#13; </div>&#13; &#13; <div style="clear: both;">&#13; <p paraeid="{af800f0a-7ab9-42ae-b2c0-ddaecb6dc1bd}{186}" paraid="1166897233"> </p>&#13; </div>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Researchers pinpoint the origin of defects that sap the performance of next-generation solar technology.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">We now know what to target to bring up the performances of perovskites.</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Samuel Stranks</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">Andrew Winchester</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Perovskites</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width: 0px;" /></a><br />&#13; ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 16 Apr 2020 09:27:22 +0000 erh68 213752 at