ֱ̽ of Cambridge - BHP /taxonomy/external-affiliations/bhp en Carbon capture: universities and industry work together to tackle emissions /research/news/carbon-capture-universities-and-industry-work-together-to-tackle-emissions <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/features/241017carbon-sequetrationjerome-neufeld.jpg?itok=8M0pQHdo" alt="Modelling CCS" title="Modelling CCS, Credit: Jerome Neufeld" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽world is not going carbon-free any time soon: that much is clear. Developed and developing countries alike rely on fossil fuels for transport, industry and power, all of which release CO<sub>2</sub> into the atmosphere. But as sea levels rise, ‘unprecedented’ weather events become commonplace and the polar ice caps melt, how can we balance our use of fossil fuels with the imperative to combat the catastrophic effects of climate change?</p> <p>“Everything suggests that we won’t be able to stop burning carbon-based fuels, particularly in rapidly developing countries like India and China,” says Professor Mike Bickle of Cambridge’s Department of Earth Sciences. “Along with increasing use of renewable energy and improved energy efficiency, one way to cope with that is to use carbon capture and storage – and there is no technical reason why it can’t be deployed right now.”</p> <p>Carbon capture and storage (CCS) is a promising and practical solution to drastically reducing carbon emissions, but it has had a stilted development pathway to date. In 2015, the UK government cancelled a £1 billion competition for CCS technology six months before it was due to be awarded, citing high costs. Just one year later, a high-level advisory group appointed by ministers recommended that establishing a CCS industry in the UK now could save the government and consumers billions per year from the cost of meeting climate change targets.</p> <p>CCS is the only way of mitigating the 20% of CO<sub>2</sub> emissions from industrial processes – such as cement manufacturing and steel making, for which there is no obvious alternative – to help meet the world’s commitments to limit warming to below 2<sup>o</sup>C. It works by trapping the CO<sub>2</sub> emitted from burning fossil fuels, which is then cooled, liquefied and pumped deep underground into geological formations, saline aquifers or disused oil and gas fields. Results from lab-based tests, and from working CCS sites such as Sleipner in the North Sea, suggest that carbon can be safely stored underground in this way for 10,000 years or more.</p> <p>“ ֱ̽big companies understand the science of climate change, and they understand that we’ve got to invest in technologies like CCS now, before it’s too late,” says Dr Jerome Neufeld of Cambridge’s Department of Applied Mathematics and Theoretical Physics, and Department of Earth Sciences. “But it’s a tricky business running an industry where nobody is charging for carbon.”</p> <p>“Everyone always wants the cheapest option, so without some form of carbon tax, it’s going to be difficult to get CCS off the ground at the scale that’s needed,” says Bickle. “But if you look at the cost of electricity produced from gas or coal with CCS added, it’s very similar to the cost of electricity from solar or wind. So if governments put a proper carbon charge in place, renewables and CCS would compete with each other on a relatively even playing field, and companies would have the economic incentive to invest in CCS.”</p> <p>Bickle and Neufeld are following discussions about CCS closely because, along with collaborators from Stanford and Melbourne Universities, they have recently started a new CCS project with the support of BHP, one of the world’s largest mining and materials companies.</p> <p> ֱ̽three-year project will develop and improve methods for the long-term storage of CO<sub>2</sub>, and will test them at Otway in southern Australia, one of the largest CCS test sites in the world. Using a mix of theoretical modelling and small-, medium- and large-scale experiments, the researchers hope to significantly increase the types of sites where CCS is possible, including in China and developing economies.</p> <p>In most current CCS schemes, CO<sub>2</sub> is stored in porous underground rock formations with a thick layer of non-porous rock, such as shale, on top. ֱ̽top layer provides extra insurance that the relatively light CO<sub>2</sub> will not escape.</p> <p> ֱ̽new research, which will support future large-scale CO<sub>2</sub> storage, will consider whether CO<sub>2</sub> could be effectively trapped without the top seal of impermeable rock, meaning that CCS could be deployed in a wider range of environments. Their research findings will be made publicly available to accelerate the broader deployment of CCS.</p> <p>“We are seeing a growing acknowledgement from industry, governments and society that to meet emissions reductions targets we are going to need to accelerate the use of this technology – we simply can’t do it quickly enough without CCS across both power generation and industry,” says BHP Vice President of Sustainability and Climate Change, Dr Fiona Wild. “We know CCS technology works and is proven. Our focus at BHP is on how we can help make sure the world has access to the information required to make it work at scale in a cost effective and timely way.”</p> <p>During the project, Stanford researchers will measure the rate at which porous rock can trap CO<sub>2</sub> using small-scale experiments on rock samples at reservoir conditions, while the Cambridge researchers will be using larger analogue models, in the order of metres or tens of metres. ֱ̽Melbourne-based researchers will use large-scale numerical simulations of complex geological settings.</p> <p>“One of the things this collaboration will really open up is the ability to deploy CCS almost anywhere,” says Neufeld, who is also affiliated with Cambridge’s Department of Earth Sciences and the BP Institute. “We know that CO<sub>2</sub> can be safely trapped in porous rock with a seal of shale on top, but the early results from Otway have shown that even without the impenetrable seal, CO<sub>2</sub> can be trapped just as effectively.”</p> <p>When CO<sub>2</sub> is pumped into underground saline aquifers, it is in a ‘super-critical’ phase: not quite a liquid and not quite a gas. ֱ̽super-critical CO<sub>2</sub> is less dense than the salt water, and so has a tendency to run uphill, but it’s been found that surface tension between the salt water and the rock is quite effective at pinning the CO<sub>2</sub> in place so that it can’t escape. This phenomenon, known as capillary trapping, is also observed when water is held in a sponge.</p> <p>“ ֱ̽results from Otway show that if you inject CO<sub>2</sub> into a heterogeneous reservoir, it will mix with the salt water and capillary trapping will pin it there quite effectively, so it opens up a much broader range of potential carbon storage sites,” says Bickle.</p> <p>“However, we need to start deploying CCS now, and the biggest challenges we face are economics and policy. If these prevent us from doing anything until it’s too late, and we’re at a stage when we’d have to start capturing carbon directly from the atmosphere, it will be far more expensive. By not starting CCS now, we’re building false economies.”</p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>An international collaboration between universities and industry will further develop carbon capture and storage technology – one of the best hopes for drastically reducing carbon emissions – so that it can be deployed in a wider range of sites around the world.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">We need to start deploying CCS now, and the biggest challenges we face are economics and policy. If we’re at a stage when we’d have to start capturing carbon directly from the atmosphere, it will be far more expensive.</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Mike Bickle</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">Jerome Neufeld</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Modelling CCS</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">Creative Commons Attribution 4.0 International License</a>. For image use please see separate credits above.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 25 Oct 2017 07:12:18 +0000 sc604 192612 at