ֱ̽ of Cambridge - School of the Physical Sciences /affiliations/school-of-the-physical-sciences en Extreme drought contributed to barbarian invasion of late Roman Britain, tree-ring study reveals /research/news/extreme-drought-contributed-to-barbarian-invasion-of-late-roman-britain-tree-ring-study-reveals <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/milecastle-39-on-hadrians-wall-credit-adam-cuerden-via-flikr-885x428.jpg?itok=eluoasIb" alt="Milecastle 39 on Hadrian&#039;s Wall" title="Milecastle 39 on Hadrian&amp;#039;s Wall, Credit: Adam Cuerden" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽‘Barbarian Conspiracy’ of 367 CE was one of the most severe threats to Rome’s hold on Britain since the Boudiccan revolt three centuries earlier. Contemporary sources indicate that components of the garrison on Hadrian’s wall rebelled and allowed the Picts to attack the Roman province by land and sea. Simultaneously, the Scotti from modern-day Ireland invaded broadly in the west, and Saxons from the continent landed in the south.</p> <p>Senior Roman commanders were captured or killed, and some soldiers reportedly deserted and joined the invaders. Throughout the spring and summer, small groups roamed and plundered the countryside. Britain’s descent into anarchy was disastrous for Rome and it took two years for generals dispatched by Valentian I, Emperor of the Western Roman Empire, to restore order. ֱ̽final remnants of official Roman administration left Britain some 40 years later around 410 CE.</p> <p> ֱ̽ ֱ̽ of Cambridge-led study, published today in <a href="https://link.springer.com/article/10.1007/s10584-025-03925-4"><em>Climatic Change</em></a>, used oak tree-ring records to reconstruct temperature and precipitation levels in southern Britain during and after the ‘Barbarian Conspiracy’ in 367 CE. Combining this data with surviving Roman accounts, the researchers argue that severe summer droughts in 364, 365 and 366 CE were a driving force in these pivotal events.</p> <p>First author Charles Norman, from Cambridge’s Department of Geography, said: “We don’t have much archaeological evidence for the ‘Barbarian Conspiracy’. Written accounts from the period give some background, but our findings provide an explanation for the catalyst of this major event.”</p> <p> ֱ̽researchers found that southern Britain experienced an exceptional sequence of remarkably dry summers from 364 to 366 CE. In the period 350 to 500 CE, average monthly reconstructed rainfall in the main growing season (April–July) was 51 mm. But in 364 CE, it fell to just 29mm. 365 CE was even worse with 28mm, and 37mm the following year kept the area in crisis.</p> <p>Professor Ulf Büntgen, from Cambridge’s Department of Geography, said: “Three consecutive droughts would have had a devastating impact on the productivity of Roman Britain’s most important agricultural region. As Roman writers tell us, this resulted in food shortages with all of the destabilising societal effects this brings.”</p> <p>Between 1836 and 2024 CE, southern Britain only experienced droughts of a similar magnitude seven times – mostly in recent decades, and none of these were consecutive, emphasising how exceptional these droughts were in Roman times. ֱ̽researchers identified no other major droughts in southern Britain in the period 350–500 CE and found that other parts of northwestern Europe escaped these conditions.</p> <p>Roman Britain’s main produce were crops like spelt wheat and six-row barley. Because the province had a wet climate, sowing these crops in spring was more viable than in winter, but this made them vulnerable to late spring and early summer moisture deficits, and early summer droughts could lead to total crop failure.</p> <p> ֱ̽researchers point to surviving accounts written by Roman chroniclers to corroborate these drought-driven grain deficits. By 367 CE, Ammianus Marcellinus described the population of Britain as in the ‘utmost conditions of famine’.</p> <p>“Drought from 364 to 366 CE would have impacted spring-sown crop growth substantially, triggering poor harvests,” Charles Norman said. “This would have reduced the grain supply to Hadrian’s Wall, providing a plausible motive for the rebellion there which allowed the Picts into northern Britain.”</p> <p> ֱ̽study suggests that given the crucial role of grain in the contract between soldiers and the army, grain deficits may have contributed to other desertions in this period, and therefore a general weakening of the Roman army in Britain. In addition, the geographic isolation of Roman Britain likely combined with the severity of the prolonged drought to reduce the ability of Rome to alleviate the deficits.</p> <p>Ultimately the researchers argue that military and societal breakdown in Roman Britain provided an ideal opportunity for peripheral tribes, including the Picts, Scotti and Saxons, to invade the province en masse with the intention of raiding rather than conquest. Their finding that the most severe conditions were restricted to southern Britain undermines the idea that famines in other provinces might have forced these tribes to invade.</p> <p>Andreas Rzepecki, from the Generaldirektion Kulturelles Erbe Rheinland-Pfalz, said: “Our findings align with the accounts of Roman chroniclers and the seemingly coordinated nature of the ‘Conspiracy’ suggests an organised movement of strong onto weak, rather than a more chaotic assault had the invaders been in a state of desperation.”</p> <p>“ ֱ̽prolonged and extreme drought seems to have occurred during a particularly poor period for Roman Britain, in which food and military resources were being stripped for the Rhine frontier, while immigratory pressures increased.”</p> <p>“These factors limited resilience, and meant a drought induced, partial-military rebellion and subsequent external invasion were able to overwhelm the weakened defences.”</p> <p> ֱ̽researchers expanded their climate-conflict analysis to the entire Roman Empire for the period 350–476 CE. They reconstructed the climate conditions immediately before and after 106 battles and found that a statistically significant number of battles were fought following dry years.</p> <p>Tatiana Bebchuk, from Cambridge’s Department of Geography, said: “ ֱ̽relationship between climate and conflict is becoming increasingly clear in our own time so these findings aren’t just important for historians. Extreme climate conditions lead to hunger, which can lead to societal challenges, which eventually lead to outright conflict.”</p> <p>Charles Norman, Ulf Büntgen, Paul Krusic and Tatiana Bebchuk are based at the Department of Geography, ֱ̽ of Cambridge; Lothar Schwinden and Andreas Rzepecki are from the Generaldirektion Kulturelles Erbe Rheinland-Pfalz in Trier. Ulf Büntgen is also affiliated with the Global Change Research Institute, Czech Academy of Sciences and the Department of Geography, Masaryk ֱ̽ in Brno.</p> <h3>Reference</h3> <p><em>C Norman, L Schwinden, P Krusic, A Rzepecki, T Bebchuk, U Büntgen, ‘<a href="https://link.springer.com/article/10.1007/s10584-025-03925-4">Droughts and conflicts during the late Roman period</a>’, Climatic Change (2025). DOI: 10.1007/s10584-025-03925-4</em></p> <h3>Funding</h3> <p>Charles Norman was supported by Wolfson College, ֱ̽ of Cambridge (John Hughes PhD Studentship). Ulf Büntgen received funding from the Czech Science Foundation (# 23-08049S; Hydro8), the ERC Advanced Grant (# 882727; Monostar), and the ERC Synergy Grant (# 101118880; Synergy-Plague).</p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Three consecutive years of drought contributed to the ‘Barbarian Conspiracy’, a pivotal moment in the history of Roman Britain, a new Cambridge-led study reveals. Researchers argue that Picts, Scotti and Saxons took advantage of famine and societal breakdown caused by an extreme period of drought to inflict crushing blows on weakened Roman defences in 367 CE. While Rome eventually restored order, some historians argue that the province never fully recovered.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">Our findings provide an explanation for the catalyst of this major event.</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Charles Norman</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://commons.wikimedia.org/wiki/File:Milecastle_39_on_Hadrian&#039;s_Wall.jpg" target="_blank">Adam Cuerden</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Milecastle 39 on Hadrian&#039;s Wall</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/public-domain">Public Domain</a></div></div></div> Thu, 17 Apr 2025 06:00:00 +0000 ta385 249332 at Strongest hints yet of biological activity outside the solar system /stories/strongest-hints-of-biological-activity <div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have detected the most promising signs yet of a possible biosignature outside the solar system, although they remain cautious.</p> </p></div></div></div> Thu, 17 Apr 2025 04:09:34 +0000 sc604 249331 at Turbocharging the race to protect nature and climate with AI /stories/ai-and-climate-and-nature <div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Rebalancing the planet must happen faster. Cambridge researchers are using AI to help.  </p> </p></div></div></div> Sun, 06 Apr 2025 17:00:51 +0000 lw355 248837 at Farewell, Gaia: spacecraft operations come to an end /research/news/farewell-gaia-spacecraft-operations-come-to-an-end <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/milkyway-j13-40kpc-top-d52-2k-dp.jpg?itok=U_LQs0Lz" alt="Artist’s impression of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope." title="Artist&amp;#039;s impression of the Milky Way, Credit: ESA/Gaia/DPAC, Stefan Payne-Wardenaar" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.</p> <p>Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.</p> <p>Launched in 2013, <a href="https://www.esa.int/Science_Exploration/Space_Science/Gaia">Gaia</a> has transformed our understanding of the cosmos by mapping the positions, distances, motions, and properties of nearly two billion stars and other celestial objects. It has provided the largest, most precise multi-dimensional map of our galaxy ever created, revealing its structure and evolution in unprecedented detail.</p> <p> ֱ̽mission uncovered evidence of past galactic mergers, identified new star clusters, contributed to the discovery of exoplanets and black holes, mapped millions of quasars and galaxies, and tracked hundreds of thousands of asteroids and comets. ֱ̽mission has also enabled the creation of the best visualisation of how our galaxy might look to an outside observer.</p> <p>“ ֱ̽data from the Gaia satellite has and is transforming our understanding of the Milky Way, how it formed, how it has evolved and how it will evolve,” said Dr Nicholas Walton from Cambridge’s Institute of Astronomy, lead of the <a href="/topics/Gaia">Gaia UK project team</a>. “Gaia has been in continuous operation for over 10 years, faultless, without interruption, reflecting the quality of the engineering, with significant elements of Gaia designed and built in the UK. But now it is time for its retirement. Gaia has finished its observations of the night sky. But the analysis of the Gaia mission data continues. Later in 2026 sees the next Gaia Data Release 4, to further underpin new discovery unravelling the beauty and mystery of the cosmos.”</p> <p>Gaia far exceeded its planned lifetime of five years, and its fuel reserves are dwindling. ֱ̽Gaia team considered how best to dispose of the spacecraft in line with ESA’s efforts to responsibly dispose of its missions.</p> <p>They wanted to find a way to prevent Gaia from drifting back towards its former home near the scientifically valuable second Lagrange point (L2) of the Sun-Earth system and minimise any potential interference with other missions in the region.</p> <p>“Switching off a spacecraft at the end of its mission sounds like a simple enough job,” said Gaia Spacecraft Operator Tiago Nogueira. “But spacecraft really don’t want to be switched off.</p> <p>“We had to design a decommissioning strategy that involved systematically picking apart and disabling the layers of redundancy that have safeguarded Gaia for so long, because we don’t want it to reactivate in the future and begin transmitting again if its solar panels find sunlight.”</p> <p>On 27 March, the Gaia control team ran through this series of passivation activities. One final use of Gaia’s thrusters moved the spacecraft away from L2 and into a stable retirement orbit around the Sun that will minimise the chance that it comes within 10 million kilometres of Earth for at least the next century.</p> <p> ֱ̽team then deactivated and switched off the spacecraft’s instruments and subsystems one by one, before deliberately corrupting its onboard software. ֱ̽communication subsystem and the central computer were the last to be deactivated.</p> <p>Gaia’s final transmission to ESOC mission control marked the conclusion of an intentional and carefully orchestrated farewell to a spacecraft that has tirelessly mapped the sky for over a decade.</p> <p>Though Gaia itself has now gone silent, its contributions to astronomy will continue to shape research for decades. Its vast and expanding data archive remains a treasure trove for scientists, refining knowledge of galactic archaeology, stellar evolution, exoplanets and much more.</p> <p>“No other mission has had such an impact over such a broad range of astrophysics. It continues to be the source of over 2,000 peer-reviewed papers per year, more than any other space mission,” said Gaia UK team member Dr Dafydd Wyn Evans, also from the Institute of Astronomy. “It is sad that its observing days are over, but work is continuing in Cambridge, and across Europe, to process and calibrate the final data so that Gaia will still be making its impact felt for many years in the future.”</p> <p>A workhorse of galactic exploration, Gaia has charted the maps that future explorers will rely on to make new discoveries. ֱ̽star trackers on ESA’s Euclid spacecraft use Gaia data to precisely orient the spacecraft. ESA’s upcoming Plato mission will explore exoplanets around stars characterised by Gaia and may follow up on new exoplanetary systems discovered by Gaia.</p> <p> ֱ̽Gaia control team also used the spacecraft’s final weeks to run through a series of technology tests. ֱ̽team tested Gaia’s micro propulsion system under different challenging conditions to examine how it had aged over more than ten years in the harsh environment of space. ֱ̽results may benefit the development of future ESA missions relying on similar propulsion systems, such as the LISA mission.</p> <p> ֱ̽Gaia spacecraft holds a deep emotional significance for those who worked on it. As part of its decommissioning, the names of around 1500 team members who contributed to its mission were used to overwrite some of the back-up software stored in Gaia’s onboard memory.</p> <p>Personal farewell messages were also written into the spacecraft’s memory, ensuring that Gaia will forever carry a piece of its team with it as it drifts through space.</p> <p>As Gaia Mission Manager Uwe Lammers put it: “We will never forget Gaia, and Gaia will never forget us.”</p> <p> ֱ̽Cambridge Gaia DPAC team is responsible for the analysis and generation of the Gaia photometric and spectro-photometric data products, and it also generated the Gaia photometric science alert stream for the duration of the satellite's in-flight operations.</p> <p><em>Adapted from a <a href="https://www.esa.int/Enabling_Support/Operations/Farewell_Gaia!_Spacecraft_operations_come_to_an_end">media release</a> by the European Space Agency. </em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p> ֱ̽European Space Agency’s Gaia spacecraft has been powered down, after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.</p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.esa.int/ESA_Multimedia/Keywords/Description/Milky_Way/(result_type)/images" target="_blank">ESA/Gaia/DPAC, Stefan Payne-Wardenaar</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Artist&#039;s impression of the Milky Way</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution-sharealike">Attribution-ShareAlike</a></div></div></div> Thu, 27 Mar 2025 10:27:38 +0000 sc604 248809 at Students from across the country get a taste of studying at Cambridge at the Cambridge Festival /news/students-from-across-the-country-get-a-taste-of-studying-at-cambridge-at-the-cambridge-festival <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/img-6087.jpg?itok=uoryH3DS" alt="Students make antibody keychains during a workshop with the MRC Toxicology Unit" title="Students make antibody keychains during a workshop with the MRC Toxicology Unit, Credit: None" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>We were delighted to welcome pupils from Warrington’s Lymm High School, Ipswich High School, ֱ̽Charter School in North Dulwich, Rickmansworth School, Sutton Valance School in Maidstone as well as schools closer to home such as St Peter’s Huntingdon, Fenstanton Primary School, Barton Primary School, Impington Village College and St Andrews School in Soham. </p> <p>Running over two days (25/26 March 2025) and held in the Cambridge Sports Centre, students went on a great alien hunt with Dr Matt Bothwell from the Institute of Astronomy, stepped back in time to explore Must Farm with Department of Archaeology and the Cambridge Archaeological Unit as well as learning to disagree well with Dr Elizabeth Phillips from ֱ̽Woolf Institute. </p> <p>Schools had a choice of workshops from a range of departments including, how to think like an engineer and making sustainable food with biotechnology with researchers from the Department of Chemical Engineering and Biotechnology, as well as the chance to get hands-on experience in the world of materials science and explore how properties of materials can be influenced by temperature at the Department of Materials Science and Metallurgy. </p> <p> ֱ̽Department of Veterinary Medicine offered students the opportunity to find out what a career in veterinary medicine may look like with workshops on animal x-rays, how different professionals work together to treat animals in a veterinary hospital as well as meeting the departments horses and cows and learn how veterinarians diagnose and treat these large animals. </p> <p>Students also had the opportunity to learn about antibodies and our immune system with the MRC Toxicology Unit. ֱ̽students learnt about the incredible job antibodies do defending our bodies against harmful invaders like bacteria and viruses. </p> <p>Alongside this, a maths trail, developed by Cambridgeshire County Council, guided students around the West Cambridge site whilst testing their maths skills with a number of problems to solve. </p> <p>Now in their third year, the Cambridge Festival schools days are offering students the opportunity to experience studying at Cambridge with a series of curriculum linked talks and hands on workshops.   </p> <p> ֱ̽<a href="https://www.festival.cam.ac.uk/">Cambridge Festival</a> runs from 19 March – 4 April and is a mixture of online, on-demand and in-person events covering all aspects of the world-leading research happening at Cambridge. ֱ̽public have the chance to meet some of the researchers and thought-leaders working in some of the pioneering fields that will impact us all.</p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Over 500 KS2 and KS3 students from as far away as Warrington got the chance to experience studying at the ֱ̽ of Cambridge with a selection of lectures and workshops held as part of the Cambridge Festival. </p> </p></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Students make antibody keychains during a workshop with the MRC Toxicology Unit</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Thu, 27 Mar 2025 10:17:46 +0000 zs332 248808 at Webb Telescope sees galaxy in mysteriously clearing fog of early Universe /research/news/webb-telescope-sees-galaxy-in-mysteriously-clearing-fog-of-early-universe <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/weic2505a-dp.jpg?itok=GSm7BFaa" alt="JADES-GS-z13-1 in the GOODS-S field" title="JADES-GS-z13-1 in the GOODS-S field, Credit: ESA/Webb, NASA, STScI, CSA, JADES Collaboration" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>A key goal of the NASA/ESA/CSA James Webb Space Telescope has been to see further than ever before into the distant past of our Universe, when the first galaxies were forming after the Big Bang, a period know as cosmic dawn.</p> <p>Researchers studying one of those very early galaxies have now made a discovery in the spectrum of its light, that challenges our established understanding of the Universe’s early history. Their <a href="https://www.nature.com/articles/s41586-025-08779-5">results</a> are reported in the journal <em>Nature</em>.</p> <p>Webb discovered the incredibly distant galaxy JADES-GS-z13-1, observed at just 330 million years after the Big Bang. Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.</p> <p> ֱ̽NIRCam imaging yielded an initial redshift estimate of 12.9. To confirm its extreme redshift, an international team led by Dr Joris Witstok, previously of the ֱ̽ of Cambridge’s Kavli Institute for Cosmology, observed the galaxy using Webb’s Near-Infrared Spectrograph (NIRSpec) instrument.</p> <p> ֱ̽resulting spectrum confirmed the redshift to be 13.0. This equates to a galaxy seen just 330 million years after the Big Bang, a small fraction of the Universe’s present age of 13.8 billion years.</p> <p>But an unexpected feature also stood out: one specific, distinctly bright wavelength of light, identified as the Lyman-α emission radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the Universe’s development.</p> <p>“ ֱ̽early Universe was bathed in a thick fog of neutral hydrogen,” said co-author Professor Roberto Maiolino from Cambridge’s Kavli Institute for Cosmology. “Most of this haze was lifted in a process called reionisation, which was completed about one billion years after the Big Bang.</p> <p>“GS-z13-1 is seen when the Universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-α emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”</p> <p>Before and during the epoch of reionisation, neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of coloured glass. Until enough stars had formed and were able to ionise the hydrogen gas, no such light — including Lyman-α emission — could escape from these fledgling galaxies to reach Earth.</p> <p> ֱ̽confirmation of Lyman-α radiation from this galaxy has great implications for our understanding of the early Universe. “We really shouldn’t have found a galaxy like this, given our understanding of the way the Universe has evolved,” said co-author Kevin Hainline from the ֱ̽ of Arizona. “We could think of the early Universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil.”</p> <p> ֱ̽source of the Lyman-α radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the Universe. “ ֱ̽large bubble of ionised hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok, who is now based at the Cosmic Dawn Center at the ֱ̽ of Copenhagen. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.</p> <p> ֱ̽team plans further follow-up observations of GS-z13-1, aiming to obtain more information about the nature of this galaxy and origin of its strong Lyman-α radiation. Whatever the galaxy is concealing, it is certain to illuminate a new frontier in cosmology.</p> <p>JWST is an international partnership between NASA, ESA and the Canadian Space Agency (CSA). ֱ̽data for this result were captured as part of the JWST Advanced Deep Extragalactic Survey (JADES).</p> <p><em><strong>Reference:</strong><br /> Joris Witstok et al. ‘<a href="https://www.nature.com/articles/s41586-025-08779-5">Witnessing the onset of reionization through Lyman-α emission at redshift 13</a>.’ Nature (2025). DOI: 10.1038/s41586-025-08779-5</em></p> <p><em>Adapted from an ESA media release.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Astronomers have identified a bright hydrogen emission from a galaxy in the very early Universe. ֱ̽surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Roberto Maiolino</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://esawebb.org/images/weic2505a/" target="_blank">ESA/Webb, NASA, STScI, CSA, JADES Collaboration</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">JADES-GS-z13-1 in the GOODS-S field</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 26 Mar 2025 16:00:00 +0000 sc604 248804 at Thriving Antarctic ecosystems found following iceberg calving /research/news/thriving-antarctic-ecosystems-found-following-iceberg-calving <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/fkt250110-s0782-20250126t112030z-0-scicam-coralshotglam-2-dp.jpg?itok=bFhTCRYS" alt="A stalk of deep-sea coral" title="Deep-sea coral at a depth of 1200 metres, Credit: ROV SuBastian / Schmidt Ocean Institute" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>An international team of scientists have uncovered a thriving underwater ecosystem off the coast of Antarctica that had never before been accessible to humans.</p> <p> ֱ̽team, including researchers from the ֱ̽ of Cambridge, were working in the Bellingshausen Sea off the coast of Antarctica when a massive iceberg <a href="https://earthobservatory.nasa.gov/images/153968/new-antarctic-iceberg-speeds-off">broke away</a> from the George VI Ice Shelf in January of this year.</p> <p> ֱ̽team, on board Schmidt Ocean Institute’s <em>R/V Falkor (too)</em>, changed their plans and reached the newly exposed seafloor 12 days later, becoming the first to investigate the area.</p> <p>Their expedition was the first detailed study of the geology, physical oceanography, and biology beneath such a large area once covered by a floating ice shelf. ֱ̽A-84 iceberg was approximately 510 square kilometres (209 square miles) in size, and revealed an equivalent area of seafloor when it broke away from the ice shelf.</p> <p>"We seized upon the moment, changed our expedition plan, and went for it so we could look at what was happening in the depths below," said expedition co-chief scientist Dr Patricia Esquete from the ֱ̽ of Aveiro, Portugal. "We didn't expect to find such a beautiful, thriving ecosystem. Based on the size of the animals, the communities we observed have been there for decades, maybe even hundreds of years.”</p> <p>Using Schmidt Ocean Institute’s remotely operated vehicle, ROV <em>SuBastian</em>, the team observed the deep seafloor for eight days and found flourishing ecosystems at depths as great as 1300 meters.</p> <p>Their observations include large corals and sponges supporting an <a href="https://youtu.be/4uUo0dWp14A?feature=shared">array of animal life</a>, including icefish, giant sea spiders, and octopus. ֱ̽discovery offers new insights into how ecosystems function beneath floating sections of the Antarctic ice sheet.</p> <p>Little is known about what lies beneath Antarctica’s floating ice shelves. In 2021, British Antarctic Survey researchers first reported signs of bottom-dwelling life beneath the Filchner-Ronne ice shelf in the Southern Weddell Sea. ֱ̽current expedition was the first to use an ROV to explore this remote environment.</p> <p> ֱ̽team was surprised by the significant biomass and biodiversity of the ecosystems and suspect they have discovered several new species.</p> <p>Deep-sea ecosystems typically rely on nutrients from the surface slowly raining down to the seafloor. For centuries, the ecosystems under the ice shelf have been covered by ice almost 150 metres thick, completely cutting them off from surface nutrients. " ֱ̽fact that we found long-living species suggests that the lateral transport, which mostly consists of glacial meltwater from the ice shelf, could be the source of the nutrients to sustain the life we found," said team member Dr Laura Cimoli, from Cambridge’s Department of Applied Mathematics and Theoretical Physics.</p> <p> ֱ̽newly exposed Antarctic seafloor also allowed the team, with scientists from Portugal, the United Kingdom, Chile, Germany, Norway, New Zealand, and the United States, to gather critical data on the past behaviour of the larger Antarctic ice sheet. ֱ̽ice sheet has been shrinking and losing mass over the last few decades due to climate change.</p> <p>“ ֱ̽ice loss from the Antarctic Ice Sheet is a major contributor to sea level rise worldwide,” said expedition co-chief scientist Sasha Montelli of ֱ̽ College London (UCL). “Our work is critical for providing longer-term context of these recent changes, improving our ability to make projections of future change — projections that can inform actionable policies. We will undoubtedly make new discoveries as we continue to analyse this data.”</p> <p>“We were thrilled by the opportunity to explore the newly exposed seafloor,” said team member Dr Svetlana Radionovskaya from Cambridge’s Department of Earth Sciences. “ ֱ̽research will provide key insights into ice sheet dynamics, oceanography and sub-ice shelf ecosystems. At a time when the West Antarctic Ice Sheet is melting at an alarming rate, understanding these dynamics and their impacts is crucial.”</p> <p></p><div class="media media-element-container media-default"><div id="file-227380" class="file file-image file-image-jpeg"> <h2 class="element-invisible"><a href="/file/photo1-fkt250110-20250117-gliderdeploymentzodiac-ingle-2717-jpg">photo1_fkt250110-20250117-gliderdeploymentzodiac-ingle-2717.jpg</a></h2> <div class="content"> <img class="cam-scale-with-grid" alt="Dr Cimoli (right) and Dr Meyer (UEA, left) prepare an underwater glider for deployment." title="Dr Cimoli (right) and Dr Meyer (UEA, left) prepare an underwater glider for deployment." data-delta="1" src="/sites/default/files/photo1_fkt250110-20250117-gliderdeploymentzodiac-ingle-2717.jpg" width="3840" height="2560" /> </div> </div> </div> <p> ֱ̽oceanography team, led by Cimoli in collaboration with the ֱ̽ of East Anglia and the British Antarctic Survey, used autonomous underwater vehicles to characterise the ocean circulation of the region and study the impacts of glacial meltwater on the physical and chemical seawater properties. "Antarctica and the Southern Ocean are a nexus point for ocean circulation, so changes that happen around Antarctica can affect global ocean circulation and global climate," said Cimoli.</p> <p> ֱ̽researchers are also investigating how the iceberg calving event has contributed to mix the upper ocean, not just in the recently exposed area, but also further downstream as the iceberg floats away. As the giant iceberg drifts, it can generate turbulence that mixes water properties and could potentially mix the deep nutrient-rich water with the surface waters, fuelling biological productivity. </p> <p> ֱ̽expedition was part of <a href="https://challenger150.world/">Challenger 150</a>, a global cooperative focused on deep-sea biological research and endorsed by the Intergovernmental Oceanographic Commission of UNESCO (IOC/UNESCO) as an Ocean Decade Action.</p> <p>“ ֱ̽science team was originally in this remote region to study the seafloor and ecosystem at the interface between ice and sea,” said Schmidt Ocean Institute Executive Director, Dr Jyotika Virmani. “Being right there when this iceberg calved from the ice shelf presented a rare scientific opportunity. Serendipitous moments are part of the excitement of research at sea – they offer the chance to be the first to witness the untouched beauty of our world.” </p> <p>Svetlana Radionovskaya is a Junior Research Fellow at Queens’ College, Cambridge. Laura Cimoli is a Research Fellow at the Institute of Computing for Climate Science, Department of Applied Mathematics and Theoretical Physics at the ֱ̽ of Cambridge.</p> <p><em>Adapted from a <a href="https://schmidtocean.org/thriving-antarctic-ecosystems-found-in-wake-of-recently-detached-iceberg/">media release</a> by the Schmidt Ocean Institute.</em></p> <p><em>Inset image: Dr Cimoli (right) and Dr Meyer (UEA, left) prepare an underwater glider for deployment. Credit: Alex Ingle/Schmidt Ocean Institute.</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Scientists explore a seafloor area newly exposed by iceberg A-84; discover vibrant communities of ancient sponges and corals. </p> </p></div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://schmidtocean.photoshelter.com/index" target="_blank">ROV SuBastian / Schmidt Ocean Institute</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Deep-sea coral at a depth of 1200 metres</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution-noncommercial-sharealike">Attribution-Noncommercial-ShareAlike</a></div></div></div> Tue, 25 Mar 2025 10:22:45 +0000 Anonymous 248802 at Paymaster General visits Cambridge to see success of EU research funding /news/paymaster-general-visits-cambridge-to-see-success-of-eu-research-funding <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/a65i2358-enhanced-nr-4-min.jpg?itok=re21YyxE" alt="Photo credit: Nick Saffell / Cambridge ֱ̽" title="Photo credit: Nick Saffell / Cambridge ֱ̽, Credit: None" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽visit provided the Minister with an opportunity to meet with senior academics to discuss the success of EU funding streams, such as Horizon, and collaboration with EU institutions, and how this has enabled decisive breakthroughs at Cambridge. </p> <p>Professor Erwin Reisner, Professor of Energy and Sustainability, greeted the Minister at the Yusuf Hamied Department of Chemistry and demonstrated a history of the Chemistry Department’s scientific breakthroughs, before welcoming him to the Reisner Laboratory. During their tour of the Laboratory, Mr Thomas-Symonds also met with Professor Reisner’s team of researchers, some of whom are in receipt of funding from the EU’s prestigious Marie Curie postdoctoral fellowship programme.  </p> <p>Professor Reisner, who has a successful history of securing ERC and Horizon funding awards, then introduced his own work, which focuses on the development of concepts to make fuels, chemicals and plastics from the greenhouse gas carbon dioxide.  </p> <p>Mr Thomas-Symonds also received an insight into their research through a series of demonstrations. PhD student Beverly Low supervised him in the Lab’s glovebox, preparing a sample for the solar reforming of biomass waste. Her colleague Andrea Rogolino showed how the team use sunlight to produce hydrogen from biomass waste. </p> <p>Professor Erwin Reisner said: “ ֱ̽Minister showed great talent in the lab – he handled a glovebox very well and prepared a sample to produce hydrogen from biomass using solar energy. ֱ̽visit provided us an opportunity to emphasise the importance of a close alliance with our friends and colleagues in Europe.”</p> <p>After his tour of the Reisner Lab, the Minister attended a roundtable discussion with Cambridge ERC grant-holders and ֱ̽ leaders. He was joined by academics from across disciplines and heard from those in receipt of funding from a variety of EU funding streams.</p> <p> ֱ̽Minister spoke to Professor Chiara Ciccarelli (Professor of Physics), Professor Erwin Reisner (Professor of Energy and Sustainability), Professor Marcos Martinón-Torres (Pitt-Rivers Professor of Archaeological Science) and Professor David Fairen-Jimenez (Professor of Molecular Engineering and co-founder of successful Cambridge spinouts).</p> <p> ֱ̽roundtable was chaired by leading Professor of EU Law, Professor Catherine Barnard, and also included the ֱ̽’s Director of Research Services, Dr Andrew Jackson. </p> <p>Following his visit to the Department of Chemistry, the Minister delivered the Mackenzie-Stuart Lecture, at the ֱ̽’s Centre for European Legal Studies. </p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p> ֱ̽Rt Hon Nick Thomas-Symonds MP, the Paymaster General and Minister with responsibility for EU relations, visited Cambridge on Thursday 13 March.</p> </p></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Photo credit: Nick Saffell / Cambridge ֱ̽</div></div></div><div class="field field-name-field-slideshow field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/sites/default/files/a65i2411-enhanced-nr-13-min.jpg" title="" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/a65i2411-enhanced-nr-13-min.jpg?itok=bL-CHw0l" width="590" height="288" alt="" title="" /></a></div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img alt="Creative Commons License." src="/sites/www.cam.ac.uk/files/inner-images/cc-by-nc-sa-4-license.png" style="border-width: 0px; width: 88px; height: 31px;" /></a><br /> ֱ̽text in this work is licensed under a <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution">Attribution</a></div></div></div> Mon, 17 Mar 2025 10:31:13 +0000 Anonymous 248772 at