ֱ̽ of Cambridge - Alex Taylor /taxonomy/people/alex-taylor en ‘Programmable molecular scissors’ could help fight COVID-19 infection /research/news/synthetic-biology-meets-medicine-programmable-molecular-scissors-could-help-fight-covid-19-infection <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/gettyimages-1219205536-crop.jpg?itok=_o4_jh9X" alt="A 3d animation of the COVID-19 Virus or Coronavirus being broken apart" title="A 3d animation of the COVID-19 Virus or Coronavirus being broken apart, Credit: Jordan Siemens (Getty Images)" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Enzymes are naturally occurring biological catalysts, which enable the chemical transformations required for our bodies to function – from translating the genetic code into proteins, right through to digesting food. Although most enzymes are proteins, some of these crucial reactions are catalysed by RNA, a chemical cousin of DNA, which can fold into enzymes known as ribozymes. Some classes of ribozyme are able to target specific sequences in other RNA molecules and cut them precisely.</p> <p>In 2014, Dr Alex Taylor and colleagues discovered that artificial genetic material known as XNA – in other words, synthetic chemical alternatives to RNA and DNA not found in nature – <a href="/research/news/worlds-first-artificial-enzymes-created-using-synthetic-biology">could be used to create the world’s first fully-artificial enzymes, which Taylor named XNAzymes</a>.</p> <p>At the beginning, XNAzymes were inefficient, requiring unrealistic laboratory conditions to function. Earlier this year, however, his lab reported <a href="https://www.nature.com/articles/s41557-022-01021-z">a new generation of XNAzymes</a>, engineered to be much more stable and efficient under conditions inside cells. These artificial enzymes can cut long, complex RNA molecules and are so precise that if the target sequence differs by just a single nucleotide (the basic structural unit of RNA), they will recognise not to cut it. This means they can be programmed to attack mutated RNAs involved in cancer or other diseases, leaving normal RNA molecules well alone.</p> <p>Now, in research published today in Nature Communications, Taylor and his team at the Cambridge Institute of Therapeutic Immunology &amp; Infectious Disease (CITIID), ֱ̽ of Cambridge, report how they have used this technology to successfully ‘kill’ live SARS-CoV-2 virus.</p> <p>Taylor, a Sir Henry Dale Fellow and Affiliated Researcher at St John’s College, Cambridge, said: “Put simply, XNAzymes are molecular scissors which recognise a particular sequence in the RNA, then chop it up. As soon as scientists published the RNA sequence of SARS-CoV-2, we started scanning through looking for sequences for our XNAzymes to attack.”</p> <p>While these artificial enzymes can be programmed to recognise specific RNA sequences, the catalytic core of the XNAzyme – the machinery that operates the ‘scissors’ – does not change. This means that creating new XNAzymes can be done in far less time than it normally takes to develop antiviral drugs.</p> <p>As Taylor explained: “It’s like having a pair of scissors where the overall design remains the same, but you can change the blades or handles depending on the material you want to cut. ֱ̽power of this approach is that, even working by myself in the lab at the start of the pandemic, I was able to generate and screen a handful of these XNAzymes in a matter of days.”</p> <p>Taylor then teamed up with Dr Nicholas Matheson to show that his XNAzymes were active against live SARS-CoV-2 virus, taking advantage of CITIID’s state-of-the-art Containment Level 3 Laboratory – the largest academic facility for studying high risk biological agents like SARS-CoV-2 in the country.</p> <p>“It's really encouraging that for the first time – and this has been a big goal of the field – we actually have them working as enzymes inside cells, and inhibiting replication of live virus,” said Dr Pehuén Pereyra Gerber, who performed the experiments on SARS-CoV-2 in Matheson’s lab.</p> <p>“What we’ve shown is proof of principle, and it’s still early days,” added Matheson, “It’s worth remembering, however, that the amazingly successful Pfizer and Moderna COVID-19 vaccines are themselves based on synthetic RNA molecules – so it’s a really exciting and rapidly developing field, with enormous potential.”</p> <p>Taylor checked the target viral sequences against databases of human RNAs to ensure they were not present in our own RNA. Because the XNAzymes are highly specific, this should in theory prevent some of the ‘off-target’ side-effects that similar, less accurate molecular therapeutics may cause, such as liver toxicity.</p> <p>SARS-CoV-2 has the ability to evolve and change its genetic code, leading to new variants against which vaccines are less effective. To get around this problem, Taylor not only targeted regions of the viral RNA that mutate less frequently, but he also designed three of the XNAzymes to self-assemble into a ‘nanostructure’ that cuts different parts of the virus genome.</p> <p>“We’re targeting multiple sequences, so for the virus to evade the therapy it would have to mutate at several sites at once,” he said. “In principle, you could combine lots of these XNAzymes together into a cocktail. But even if a new variant does appear that is capable of getting round this, because we already have the catalytic core, we can rapidly make new enzymes to keep ahead of it.”</p> <p>XNAzymes could potentially be administered as drugs to protect people exposed to COVID-19, to prevent the virus taking hold, or to treat patients with infection, helping rid the body of the virus. This sort of approach might be particularly important for patients who, because of a weakened immune system, <a href="/research/news/study-highlights-risk-of-new-sars-cov-2-mutations-emerging-during-chronic-infection">struggle to clear the virus on their own</a>.</p> <p> ֱ̽next step for Taylor and his team is to make XNAzymes that are even more specific and robust – “bulletproof,” he says – allowing them to remain in the body for longer, and work as even more effective catalysts, in smaller doses.</p> <p> ֱ̽research was funded by the Wellcome Trust, the Royal Society, the Medical Research Council, NHS Blood and Transplant, and Addenbrooke’s Charitable Trust.</p> <p><em><strong>Reference</strong><br /> Pereyra Gerber, P, Donde, MJ, Matheson, NJ and Taylor, AI. <a href="https://doi.org/10.1038/s41467-022-34339-w">XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection.</a> Nature Communications (2022). DOI: 10.1038/s41467-022-34339-w</em></p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Cambridge scientists have used synthetic biology to create artificial enzymes programmed to target the genetic code of SARS-CoV-2 and destroy the virus, an approach that could be used to develop a new generation of antiviral drugs.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">XNAzymes are molecular scissors which recognise a particular sequence in the RNA, then chop it up</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Alex Taylor</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.gettyimages.co.uk/detail/photo/3d-animation-of-the-covid-19-virus-or-coronavirus-royalty-free-image/1219205536?phrase=sars-cov-2" target="_blank">Jordan Siemens (Getty Images)</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">A 3d animation of the COVID-19 Virus or Coronavirus being broken apart</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. Images, including our videos, are Copyright © ֱ̽ of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our <a href="/">main website</a> under its <a href="/about-this-site/terms-and-conditions">Terms and conditions</a>, and on a <a href="/about-this-site/connect-with-us">range of channels including social media</a> that permit your use and sharing of our content under their respective Terms.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Wed, 16 Nov 2022 10:00:18 +0000 cjb250 235431 at World’s first artificial enzymes created using synthetic biology /research/news/worlds-first-artificial-enzymes-created-using-synthetic-biology <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/xnaimage.jpg?itok=blqfdhFr" alt=" ֱ̽study built on previous work which created synthetic molecules known as “XNA”, then used these as the basis of creating so-called “XNAzymes”." title=" ֱ̽study built on previous work which created synthetic molecules known as “XNA”, then used these as the basis of creating so-called “XNAzymes”., Credit: A. Taylor" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>A team of researchers have created the world’s first enzymes made from artificial genetic material.</p>&#13; &#13; <p> ֱ̽synthetic enzymes, which are made from molecules that do not occur anywhere in nature, are capable of triggering chemical reactions in the lab.</p>&#13; &#13; <p> ֱ̽research is <a href="https://www.nature.com/articles/nature13982">published in the journal Nature</a> and promises to offer new insights into the origins of life, as well as providing a potential starting point for an entirely new generation of drugs and diagnostics. In addition, the authors speculate that the study increases the range of planets that could potentially host life.</p>&#13; &#13; <p>All life on Earth depends on the chemical transformations that enable cellular function and the performance of basic tasks, from digesting food to making DNA. These are powered by naturally-occurring enzymes which operate as catalysts, kick-starting the process and enabling such reactions to happen at the necessary rate.</p>&#13; &#13; <p>For the first time, however, the research shows that these natural biomolecules may not be the only option, and that artificial enzymes could also be used to power the reactions that enable life to occur.</p>&#13; &#13; <p> ֱ̽findings build on previous work in which the scientists, from the MRC Laboratory of Molecular Biology in Cambridge and the ֱ̽ of Cambridge, created synthetic molecules called “XNAs”. These are entirely artificial genetic systems that can store and pass on genetic information in a manner similar to DNA.</p>&#13; &#13; <p>Using these XNAs as building blocks, the new research involved the creation of so-called “XNAzymes”. Like naturally occurring enzymes, these are capable of powering simple biochemical reactions.</p>&#13; &#13; <p>Dr Alex Taylor, a Post-doctoral Researcher at St John’s College, ֱ̽ of Cambridge, who is based at the MRC Laboratory and was the study’s lead author, said: “ ֱ̽chemical building blocks that we used in this study are not naturally-occurring on Earth, and must be synthesised in the lab. This research shows us that our assumptions about what is required for biological processes – the ‘secret of life’ – may need some further revision. ֱ̽results imply that our chemistry, of DNA, RNA and proteins, may not be special and that there may be a vast range of alternative chemistries that could make life possible.”</p>&#13; &#13; <p>Every one of our cells contains thousands of different enzymes, many of which are proteins. In addition, however, nucleic acids – DNA and its close chemical cousin, RNA – can also form enzymes. ֱ̽ribosome, the molecular machine which manufactures proteins within all cells, is an RNA enzyme. Life itself is widely thought to have begun with the emergence of a self-copying RNA enzyme.</p>&#13; &#13; <p>Dr Philipp Holliger, from the MRC Laboratory of Molecular Biology, said: “Until recently it was thought that DNA and RNA were the only molecules that could store genetic information and, together with proteins, the only biomolecules able to form enzymes.”</p>&#13; &#13; <p>“Our work suggests that, in principle, there are a number of possible alternatives to nature’s molecules that will support the catalytic processes required for life. Life’s ‘choice’ of RNA and DNA may just be an accident of prehistoric chemistry.”</p>&#13; &#13; <p>“ ֱ̽creation of synthetic DNA, and now enzymes, from building blocks that don’t exist in nature also raises the possibility that if there is life on other planets it may have sprung up from an entirely different set of molecules, and widens the possible number of planets that might be able to host life.”</p>&#13; &#13; <p> ֱ̽group’s previous study, carried out in 2012, showed that six alternative molecules, called XNAs, could store genetic information and evolve through natural selection. Expanding on that principle, the new research identified, for the first time, four different types of synthetic catalyst formed from these entirely unnatural building blocks.</p>&#13; &#13; <p>These XNAzymes are capable of catalysing simple reactions, like cutting and joining strands of RNA in a test tube. One of the XNAzymes can even join strands together, which represents one of the first steps towards creating a living system.</p>&#13; &#13; <p>Because their XNAzymes are much more stable than naturally occurring enzymes, the scientists believe that they could be particularly useful in developing new therapies for a range of diseases, including cancers and viral infections, which exploit the body’s natural processes.</p>&#13; &#13; <p>Dr Holliger added: “Our XNAs are chemically extremely robust and, because they do not occur in nature, they are not recognised by the body’s natural degrading enzymes. This might make them an attractive candidate for long-lasting treatments that can disrupt disease-related RNAs.”</p>&#13; &#13; <p>Professor Patrick Maxwell, Chair of the MRC’s Molecular and Cellular Medicine Board and Regius Professor of Physic at the ֱ̽ of Cambridge, said: “Synthetic biology is delivering some truly amazing advances that promise to change the way we understand and treat disease. ֱ̽UK excels in this field, and this latest advance offers the tantalising prospect of using designer biological parts as a starting point for an entirely new class of therapies and diagnostic tools that are more effective and have a longer shelf-life.”</p>&#13; &#13; <p>Funders of the research included the MRC, European Science Foundation and the Biotechnology and Biological Sciences Research Council.</p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Enzymes made from artificial molecules which do not occur anywhere in nature have been shown to trigger chemical reactions in the lab, challenging existing views about the conditions that are needed to enable life to happen.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">Our assumptions about what is required for biological processes – the ‘secret of life’ – may need some further revision</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Alex Taylor</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">A. Taylor</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even"> ֱ̽study built on previous work which created synthetic molecules known as “XNA”, then used these as the basis of creating so-called “XNAzymes”.</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/3.0/">Creative Commons Licence</a>. If you use this content on your site please link back to this page. For image rights, please see the credits associated with each individual image.</p>&#13; &#13; <p><a href="http://creativecommons.org/licenses/by-nc-sa/3.0/"><img alt="" src="/sites/www.cam.ac.uk/files/80x15.png" style="width: 80px; height: 15px;" /></a></p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Mon, 01 Dec 2014 16:00:00 +0000 tdk25 141082 at