ֱ̽ of Cambridge - Siemens Healthcare /taxonomy/external-affiliations/siemens-healthcare en Cambridge extends world leading role for medical imaging with powerful new brain and body scanners /research/news/cambridge-extends-world-leading-role-for-medical-imaging-with-powerful-new-brain-and-body-scanners <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/7tdualmode.jpg?itok=4js24cgG" alt="" title="Credit: None" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p> ֱ̽equipment, funded by the Medical Research Council (MRC), Wellcome Trust and Cancer Research UK, sits within the newly-refurbished Wolfson Brain Imaging Centre (WBIC), which today celebrates two decades at the forefront of medical imaging.<br /> <br /> At the heart of the refurbishment are three cutting-edge scanners, of which only a very small handful exist at institutions outside Cambridge – and no institution other than the ֱ̽ of Cambridge has all three. These are:</p> <ul> <li>a Siemens 7T Terra Magnetic Resonance Imaging (MRI) scanner, which will allow researchers to see detail in the brain as tiny as a grain of sand</li> <li>a GE Healthcare PET/MR scanner that will enable researchers to collect critical data to help understand how cancers grow, spread and respond to treatment, and how dementia progresses</li> <li>a GE Healthcare hyperpolarizer that enables researchers to study real-time metabolism of cancers and other body tissues, including whether a cancer therapy is effective or not</li> </ul> <p>These scanners, together with refurbished PRISMA and Skyra 3T MRI scanners at the WBIC and at the Medical Research Council Cognition and Brain Sciences Unit, will make the Cambridge Biomedical Campus the best-equipped medical imaging centre in Europe.<br /> <br /> Professor Ed Bullmore, Co-Chair of Cambridge Neuroscience and Scientific Director of the WBIC, says: “This is an exciting day for us as these new scanners will hopefully provide answers to questions that we have been asking for some time, as well as opening up new areas for us to explore in neuroscience, mental health research and cancer medicine.<br /> <br /> “By bringing together these scanners, the research expertise in Cambridge, and the latest in ‘big data’ informatics, we will be able to do sophisticated analyses that could revolutionise our understanding of the brain – and how mental health disorders and dementias arise – as well of cancers and how we treat them. This will be a powerful research tool and represents a big step in the direction of personalised treatments.”<br /> <br /> Dr Rob Buckle, Director of Science Programmes at the MRC, adds: “ ֱ̽MRC is proud to sponsor this exciting suite of new technologies at the ֱ̽ of Cambridge. They will play an important role in advancing our strategy in stratified medicine, ultimately ensuring that the right patient gets the right treatment at the right time.”</p> <p> </p> <p></p> <p><em>Slide show: Click on images to expand</em></p> <h2>7T Medical Resonance Imaging (MRI) scanner</h2> <p> ֱ̽Siemens 7T Terra scanner – which refers to the ultrahigh strength of its magnetic field at 7 Tesla – will allow researchers to study at unprecedented levels of detail the workings of the brain and how it encodes information such as individual memories. Current 3T MRI scanners can image structures 2-3mm in size, whereas the new scanner has a resolution of just 0.5mm, the size of a coarse grain of sand.<br /> <br /> “Often, the early stages of diseases of the brain, such as Alzheimer’s and Parkinson’s, occur in very small structures – until now too small for us to see,” explains Professor James Rowe, who will be leading research using the new 7T scanner. “ ֱ̽early seeds of dementia for example, which are often sown in middle age, have until now been hidden to less powerful MRI scanners.”<br /> <br /> ֱ̽scanner will also be able to pick up unique signatures of neurotransmitters in the brain, the chemicals that allow its cells to communicate with each other. Changes in the amount of these neurotransmitters affect how the brain functions and can underpin mental health disorders such as depression and schizophrenia.<br /> <br /> “How a patient responds to a particular drug may depend on how much of a particular neurotransmitter present is currently present,” says Professor Rowe. “We will be looking at whether this new scanner can help provide this information and so help us tailor treatments to individual patients.”<br /> <br /> ֱ̽scanner will begin operating at the start of December, with research projects lined up to look at dementias caused by changes to the brain almost undetectable by conventional scanners, and to look at how visual and sound information is converted to mental representations in the brain.</p> <h2>PET/MR scanner</h2> <p> ֱ̽new GE Healthcare PET/MR scanner brings together two existing technologies: positron emission tomography (PET), which enables researchers to visualise cellular activity and metabolism, and magnetic resonance (MR), which is used to image soft tissue for structural and functional details.<br /> <br /> Purchased as part of the Dementias Platform UK, a network of imaging centres across the UK, the scanner will enable researchers to simultaneously collect information on physiological and disease-related processes in the body, reducing the need for patients to return for multiple scans. This will be particularly important for dementia patients.<br /> <br /> Professor Fiona Gilbert, who will lead research on the PET/MR scanner, explains: “Dementia patients are often frail, which can present challenges when they need separate PET and MR scanners. So, not only will this new scanner provide us with valuable information to help improve understanding and diagnosis of dementia, it will also be much more patient-friendly.”<br /> <br /> PET/MR  will allow researchers to see early molecular changes in the brain, accurately map them onto structural brain images and follow their progression as disease develops or worsens. This could enable researchers to diagnose dementia before any symptoms have arisen and to understand which treatments may best halt or slow the disease.<br /> <br /> As well as being used for dementia research, the scanner will also be applied to cancer research, says Professor Gilbert.<br /> <br /> “At the moment, we have to make lots of assumptions about what’s going on in tumour cells. We can take biopsies and look at the different cell types, how aggressive they are, their genetic structure and so on, but we can only guess what’s happening to a tumour at a functional level. Functional information is important for helping us determine how best to treat the cancer – and hence how we can personalise treatment for a particular patient. Using PET/MR, we can get real-time information for that patient’s specific tumour and not have to assume it is behaving in the same way as the last hundred tumours we’ve seen.”<br /> <br /> ֱ̽PET/MR scanner will begin operation at the start of November, when it will initially be used to study oxygen levels and blood flow in the tumours of breast cancer patients and in studies of brain inflammation in patients with Alzheimer’s disease and depression.</p> <h2>Hyperpolarizer</h2> <p> ֱ̽third new piece of imaging equipment to be installed is a GE Healthcare hyperpolarizer, which is already up and running at the facility.<br /> <br /> MRI relies on the interaction of strong magnetic fields with a property of atomic nuclei known as ‘spin’. By looking at how these spins differ in the presence of magnetic field gradients applied across the body, scientists are able to build up three-dimensional images of tissues. ֱ̽hyperpolarizer boosts the ‘spin’ signal from tracers injected into the tissue, making the MRI measurement much more sensitive and allowing imaging of the biochemistry of the tissue as well as its anatomy.<br /> <br /> “Because of underlying genetic changes in a tumour, not all patients respond in the same way to the same treatment,” explains Professor Kevin Brindle, who leads research using the hyperpolarizer. “Using hyperpolarisation and MRI, we can potentially tell whether a drug is working, from changes in the tumour’s biochemistry, within a few hours of starting treatment. If it’s working you continue, if not you change the treatment.”</p> </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p> ֱ̽next generation of imaging technology, newly installed at the ֱ̽ of Cambridge, will give researchers an unprecedented view of the human body – in particular of the myriad connections within our brains and of tumours as they grow and respond to treatment – and could pave the way for development of treatments personalised for individual patients.</p> </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">By bringing together these scanners, the research expertise in Cambridge, and the latest in ‘big data’ informatics, we will be able to do sophisticated analyses that could revolutionise our understanding of the brain – and how mental health disorders and dementias arise – as well of cancers and how we treat them</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Ed Bullmore</div></div></div><div class="field field-name-field-slideshow field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/sites/default/files/magnetom_kontiki_stills_terra_00014_highres.jpg" title="Siemens 7T Medical Resonance Imaging scanner" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;Siemens 7T Medical Resonance Imaging scanner&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/magnetom_kontiki_stills_terra_00014_highres.jpg?itok=_dPOfruT" width="590" height="288" alt="" title="Siemens 7T Medical Resonance Imaging scanner" /></a></div><div class="field-item odd"><a href="/sites/default/files/magnetom_terra_brain.jpg" title="Brain scans of trauma patient taken on 3T scanner (left) and 7T scanner (right)" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;Brain scans of trauma patient taken on 3T scanner (left) and 7T scanner (right)&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/magnetom_terra_brain.jpg?itok=QoK5SyBb" width="590" height="288" alt="" title="Brain scans of trauma patient taken on 3T scanner (left) and 7T scanner (right)" /></a></div><div class="field-item even"><a href="/sites/default/files/7t_dual_mode.jpg" title="7T dual mode" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;7T dual mode&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/7t_dual_mode.jpg?itok=f_jyId6Y" width="590" height="288" alt="" title="7T dual mode" /></a></div><div class="field-item odd"><a href="/sites/default/files/petmr.png" title="GE Healthcare PET/MR scanner" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;GE Healthcare PET/MR scanner&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/petmr.png?itok=XfaU_h-e" width="590" height="288" alt="" title="GE Healthcare PET/MR scanner" /></a></div><div class="field-item even"><a href="/sites/default/files/screen_shot_2016-10-19_at_3.29.49_am.png" title="PET/MR scans of young female patient with epilepsy" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;PET/MR scans of young female patient with epilepsy&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/screen_shot_2016-10-19_at_3.29.49_am.png?itok=NHQ1Qo6Q" width="590" height="288" alt="" title="PET/MR scans of young female patient with epilepsy" /></a></div><div class="field-item odd"><a href="/sites/default/files/spinlab-proof-cropped.jpg" title="GE Healthcare SPINlab Diamond Polariser (hyperpolarizer)" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;GE Healthcare SPINlab Diamond Polariser (hyperpolarizer)&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/spinlab-proof-cropped.jpg?itok=x8EN9I25" width="590" height="288" alt="" title="GE Healthcare SPINlab Diamond Polariser (hyperpolarizer)" /></a></div><div class="field-item even"><a href="/sites/default/files/150225-glucose-image-lloyd-fix.gif" title="Tumour (outlined in white) &#039;feeding on’ hyperpolarized carbon-13-labelled glucose (orange) provides a means of testing when cancer drugs affect the health of the tumour – image taken from a mouse tumour model" class="colorbox" data-colorbox-gallery="" data-cbox-img-attrs="{&quot;title&quot;: &quot;Tumour (outlined in white) &#039;feeding on’ hyperpolarized carbon-13-labelled glucose (orange) provides a means of testing when cancer drugs affect the health of the tumour – image taken from a mouse tumour model&quot;, &quot;alt&quot;: &quot;&quot;}"><img class="cam-scale-with-grid" src="/sites/default/files/styles/slideshow/public/150225-glucose-image-lloyd-fix.gif?itok=przyHX4k" width="590" height="288" alt="" title="Tumour (outlined in white) &#039;feeding on’ hyperpolarized carbon-13-labelled glucose (orange) provides a means of testing when cancer drugs affect the health of the tumour – image taken from a mouse tumour model" /></a></div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:0" /></a><br /> ֱ̽text in this work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">Creative Commons Attribution 4.0 International License</a>. For image use please see separate credits above.</p> </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div> Mon, 24 Oct 2016 07:22:25 +0000 cjb250 180152 at Project to improve radiotherapy planning /research/news/project-to-improve-radiotherapy-planning <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/research/news/120130-acel-rt-brain-scan.jpg?itok=wc9J5htH" alt="Image-guided intensity modulated RT plan for a patient with a spinal tumour. ֱ̽radiation dose is shaped away from the kidneys (yellow outlines) and the spinal nerve roots (inside the green outline). ֱ̽colour wash represents radiation dose" title="Image-guided intensity modulated RT plan for a patient with a spinal tumour. ֱ̽radiation dose is shaped away from the kidneys (yellow outlines) and the spinal nerve roots (inside the green outline). ֱ̽colour wash represents radiation dose, Credit: Neil Burnet" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Radiation therapy (radiotherapy) is an essential part of cancer treatment and is used in the treatment of 40 per cent of all patients who are cured of their disease. All radiotherapy treatments work by the application of ionising radiation to malignant cells in tumours. ֱ̽free radicals released by this process damage the DNA of the exposed tissue, killing off the cancerous cells. By targeting the radiation to the tumour, the damage to surrounding healthy tissue is minimised.</p>&#13; <p>Modern radiotherapy machines can now deliver highly targeted radiotherapy treatment. However, the use of high precision radiotherapy techniques is extremely demanding in terms of hours spent, from the physician who defines the tumour target and healthy tissues, to the physicist who has to calculate a plan of optimum beam angles and trajectories for the treatment, and the radiographer, who must ensure that the treatment is delivered accurately to the target every day during a six or seven week course of radiotherapy.</p>&#13; <p>Accel-RT is an innovative partnership between oncologists, physicists and computer scientists at the Universities of Cambridge and Oxford. Over the next three years the collaborators will develop software tools and processes that will speed up the process of planning of radiotherapy. Once completed, free software tools will be available to radiotherapy treatment centres. These tools will increase patient access to high precision radiotherapy by reducing the bottle-necks in the clinical workflow. ֱ̽system will operate as a 'virtual oncologist', observing what the oncologist is treating and using novel search algorithms to recall similar cases from a clinical archive. Models of tissue structures will be used to help outline normal tissue automatically, as well as to track the movement of these structures during the course of radiotherapy treatment.</p>&#13; <p>Accel-RT is being funded by the Science and Technologies Facilities Council (STFC), through its Innovations Partnership Scheme, and will benefit from the support of Siemens Healthcare, a leading supplier of imaging technology and radiotherapy treatment devices throughout the world.</p>&#13; <p> ֱ̽key players in the project are established leaders in their fields. At the ֱ̽ of Cambridge, Dr Neil Burnet has been an 'early adopter' of novel radiotherapy technologies at Addenbrooke's, from the commissioning of the first in-house 3D computerised treatment planning system, through to the evaluation of the TomoTherapy image guided intensity modulated radiotherapy system conducted for the Department of Health. At Oxford ֱ̽, Professor Jim Davies and his team from the Department of Computer Science have experience in the handling of 'smart' data systems - using metadata elements to allow data to be searched and processed in more intuitive ways.</p>&#13; <p>Professor Andy Parker and his team at the High Energy Physics group in Cambridge have extensive experience in the storage and handling of large quantities of image data, and the use of grid computing techniques to accelerate this process. "In essence, Accel-RT is helping to identify tumours and surrounding organs during the planning and delivery of radiotherapy treatment. Tracking the change in position and volume of these structures is a complex problem. To perform these calculations in real time for a single patient would require up to 16 Teraflops of processing power – approximately 100 times the power of a standard PC workstation,” said Professor Parker, who is Professor of High Energy Physics at the Cavendish Laboratory and Principal Investigator for Accel-RT.</p>&#13; <p>For more details about the project, and to register for project news emails, go to <a href="https://growingpower.co.uk">www.accelrt.org</a>.</p>&#13; <p> </p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A collaborative project between physicists, oncologists and computer scientists at Oxford and Cambridge Universities, launched last month, will develop improved tools for the planning of high precision radiotherapy. Accel-RT will also help overcome time constraints that currently limit the use of complex radiotherapy treatment.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"> ֱ̽system will operate as a &#039;virtual oncologist&#039;, observing what the oncologist is treating and using novel search algorithms to recall similar cases from a clinical archive. </div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Andy Parker</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">Neil Burnet</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Image-guided intensity modulated RT plan for a patient with a spinal tumour. ֱ̽radiation dose is shaped away from the kidneys (yellow outlines) and the spinal nerve roots (inside the green outline). ֱ̽colour wash represents radiation dose</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by-nc-sa/3.0/"><img alt="" src="/sites/www.cam.ac.uk/files/80x15.png" style="width: 80px; height: 15px;" /></a></p>&#13; <p>This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/3.0/">Creative Commons Licence</a>. If you use this content on your site please link back to this page.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-related-links field-type-link-field field-label-above"><div class="field-label">Related Links:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="http://www.accelrt.org">Accel-RT </a></div><div class="field-item odd"><a href="http://www.accelrt.org">Accel-RT </a></div></div></div> Mon, 30 Jan 2012 09:54:10 +0000 amb206 26562 at