Artist's impression

Using the strange properties of tiny particles of gold, researchers have concentrated light down smaller than a single atom, letting them look at individual chemical bonds inside molecules, and opening up new ways to study light and matter.

Single gold atoms behave just like tiny metallic ball bearings in our experiments, with conducting electrons roaming around, which is very different from their quantum life.

Jeremy Baumberg

For centuries, scientists believed that light, like all waves, couldn鈥檛 be focused down smaller than its wavelength, just under a millionth of a metre. Now, researchers led by the 探花直播 of Cambridge have created the world鈥檚 smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms.

In collaboration with European colleagues, the team used highly conductive gold nanoparticles to make the world鈥檚 tiniest optical cavity, so small that only a single molecule can fit within it. 探花直播cavity 鈥 called a 鈥榩ico-cavity鈥 by the researchers 鈥 consists of a bump in a gold nanostructure the size of a single atom, and confines light to less than a billionth of a metre. 探花直播, reported in the journal Science, open up new ways to study the interaction of light and matter, including the possibility of making the molecules in the cavity undergo new sorts of chemical reactions, which could enable the development of entirely new types of sensors.

According to the researchers, building nanostructures with single atom control was extremely challenging. 鈥淲e had to cool our samples to -260掳C in order to freeze the scurrying gold atoms,鈥 said Felix Benz, lead author of the study. 探花直播researchers shone laser light on the sample to build the pico-cavities, allowing them to watch single atom movement in real time.

鈥淥ur models suggested that individual atoms sticking out might act as tiny lightning rods, but focusing light instead of electricity,鈥 said Professor Javier Aizpurua from the Center for Materials Physics in San Sebastian in Spain, who led the theoretical section of this work.

鈥淓ven single gold atoms behave just like tiny metallic ball bearings in our experiments, with conducting electrons roaming around, which is very different from their quantum life where electrons are bound to their nucleus,鈥 said Professor Jeremy Baumberg of the NanoPhotonics Centre at Cambridge鈥檚 Cavendish Laboratory, who led the research.

探花直播findings have the potential to open a whole new field of light-catalysed chemical reactions, allowing complex molecules to be built from smaller components. Additionally, there is the possibility of new opto-mechanical data storage devices, allowing information to be written and read by light and stored in the form of molecular vibrations.

探花直播research is funded as part of a UK Engineering and Physical Sciences Research Council (EPSRC) investment in the Cambridge NanoPhotonics Centre, as well as the European Research Council (ERC) and the Winton Programme for the Physics of Sustainability, and supported by the Spanish Council for Research (CSIC) and the 探花直播 of the Basque Country (UPV/EHU).

Reference:
Felix Benz et al. 鈥楽ingle-molecule optomechanics in 鈥榩ico-cavities鈥.鈥 Science (2016). DOI:

Inset image: 探花直播presence of the sharp metal tip on a plasma sphere concentrates the electric field into its vicinity, initiating a spark. Credit: NanoPhotonics Cambridge



探花直播text in this work is licensed under a . For image use please see separate credits above.