Scientists have determined the first 3D structures of intact mammalian genomes from individual cells, showing how the DNA from all the chromosomes intricately folds to fit together inside the cell nuclei.

Knowing where all the genes and control elements are at a given moment will help us understand the molecular mechanisms that control and maintain their expression

Ernest Laue

Researchers from the 探花直播 of Cambridge and the MRC Laboratory of Molecular Biology used a combination of imaging and up to 100,000 measurements of where different parts of the DNA are close to each other to examine the genome in a mouse embryonic stem cell. Stem cells are 鈥榤aster cells鈥, which can develop 鈥 or 鈥榙ifferentiate鈥 鈥 into almost any type of cell within the body.

Most people are familiar with the well-known 鈥榅鈥 shape of chromosomes, but in fact chromosomes only take on this shape when the cell divides. Using their new approach, the researchers have now been able to determine the structures of active chromosomes inside the cell, and how they interact with each other to form an intact genome. This is important because knowledge of the way DNA folds inside the cell allows scientists to study how specific genes, and the DNA regions that control them, interact with each other. 探花直播genome鈥檚 structure controls when and how strongly genes 鈥 particular regions of the DNA 鈥 are switched 鈥榦n鈥 or 鈥榦ff鈥. This plays a critical role in the development of organisms and also, when it goes awry, in disease.

探花直播researchers have illustrated the structure in accompanying videos, which show the intact genome from one particular mouse embryonic stem cell. In the film, above, each of the cell鈥檚 20 chromosomes is coloured differently.

In a second video, below, regions of the chromosomes where genes are active are coloured blue, and the regions that interact with the nuclear lamina (a dense fibrillar network inside the nucleus) are coloured yellow. 探花直播structure shows that the genome is arranged such that the most active genetic regions are on the interior and separated in space from the less active regions that associate with the nuclear lamina. 探花直播consistent segregation of these regions, in the same way in every cell, suggests that these processes could drive chromosome and genome folding and thus regulate important cellular events such as DNA replication and cell division.

Professor Ernest Laue, whose group at Cambridge鈥檚 Department of Biochemistry developed the approach, commented: 鈥淜nowing where all the genes and control elements are at a given moment will help us understand the molecular mechanisms that control and maintain their expression.

鈥淚n the future, we鈥檒l be able to study how this changes as stem cells differentiate and how decisions are made in individual developing stem cells. Until now, we鈥檝e only been able to look at groups, or 鈥榩opulations鈥, of these cells and so have been unable to see individual differences, at least from the outside. Currently, these mechanisms are poorly understood and understanding them may be key to realising the potential of stem cells in medicine."

探花直播research, by scientists at the Departments of Biochemistry, Chemistry and the Wellcome-MRC Stem Cell Institute at the 探花直播 of Cambridge, together with colleagues at the MRC Laboratory of Molecular Biology, is published today in the journal Nature.

Dr Tom Collins from Wellcome鈥檚 Genetics and Molecular Sciences team said: 鈥淰isualising a genome in 3D at such an unprecedented level of detail is an exciting step forward in research and one that has been many years in the making. This detail will reveal some of the underlying principles that govern the organisation of our genomes 鈥 for example how chromosomes interact or how structure can influence whether genes are switched on or off. If we can apply this method to cells with abnormal genomes, such as cancer cells, we may be able to better understand what exactly goes wrong to cause disease, and how we could develop solutions to correct this.鈥

探花直播research was funded by the Wellcome Trust, the European Union and the Medical Research Council.

Reference
Stevens, TJ et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature; 13 March 2017; DOI: 10.1038/nature21429



探花直播text in this work is licensed under a . For image use please see separate credits above.