
A new online game is听helping researchers explore whether high-contrast patterns during motion, such as stripes and zigzags, help to protect animals from predators.
A new online game is听helping researchers explore whether high-contrast patterns during motion, such as stripes and zigzags, help to protect animals from predators.
Dazzle Bug asks players to imagine themselves as a predator, trying to catch a moving bug as fast as possible
Laura Kelley
Many animals use the colours and patterns on their bodies to help them blend into the background and avoid the attention of predators. But this strategy, , is far from perfect. As soon as the animal moves, the camouflage is broken, and it is much easier for a predator to see and catch it. So how do animals protect themselves when they鈥檙e on the move?
Researchers are exploring whether high-contrast patterns during motion, such as stripes and zigzags, may be of where the animal is going. But, as little is known about such 鈥渕otion dazzle鈥, we have built to help shed light on it.
Lessons from war
探花直播idea is that it may be more effective for animals to focus on preventing capture, rather then preventing detection or recognition, is actually more than 100 years old. It was naturalist who suggested that high-contrast patterns may distort the perceived speed or direction of a moving object, making it harder to track and capture.
Such motion dazzle patterns were actually , where some ships were painted with black and white geometric patterns in an attempt to reduce the number of successful torpedo attacks from submarines. However, due to many other factors affecting wartime naval losses, it is unclear whether motion dazzle patterns actually had the .
听

听
What about the natural world? Zebras have bold stripes, and scientists of their patterns since Darwin鈥檚 time. A suggested that when zebras move, their stripes create contradictory signals about their direction of movement that is likely to confuse predators. There are potentially two visual illusions responsible for this, which could form the basis of motion dazzle effects: the wagon wheel effect and the barber pole illusion.
探花直播 is named after Western movies, where the wheels on wagons often appear to be moving backwards. This is because the visual system takes 鈥渟napshots鈥 over time and links them to create a continuous scene, in the same manner as recording film. If a wheel spoke moves forward rapidly between sampling events, it will appear to have moved backwards as it will be misidentified as the following spoke.
听
听
探花直播 (also known as the aperture effect) occurs because the moving stripes provide ambiguous information about the true direction of movement. These illusory effects produced by stripes could therefore lead to difficulties in judging the speed and movement of a moving target. However, the zebra study was entirely theoretical and didn鈥檛 test whether striped patterns actually affected the judgements of real observers.
Dazzle Bug
Surprisingly, the first experimental tests of the effectiveness of motion dazzle patterns weren鈥檛 . Some studies have shown that strikingly patterned targets can be more difficult to catch than targets with other patterns in studies using humans as 鈥減redators鈥 playing touch screen . However, other studies have found no clear advantage for So although patterns can affect our perception of movement, it鈥檚 still not clear which are most effective at doing so.
听
听
We are addressing the question of which patterns are best for avoiding predators during movement using 鈥 an online game that asks players to imagine themselves as a predator, trying to catch a moving bug as fast as possible. Each bug has a different body pattern as well as a random pattern of movement. Bugs with easy to catch patterns will disappear, whereas those that are particularly tricky to catch will survive 鈥撯搄ust like in nature. Over time, the patterns on the bugs' body will evolve so that they become harder to catch with each successive generation.
This citizen science project will allow us to see what patterns are most effective at evading capture. We can then use these results to look at what visual effects these patterns have, and to see whether these patterns match up with those found on real animals in the wild.
Our findings will offer insight into the role of stripes, which are common in many species. While these patterns may have evolved to confuse the visual perception of a predator, they may also be a result of other selection pressures, such as attracting a mate or regulating body temperature. If striped patterns survive and evolve in the game, this would provide strong evidence that these patterns do act to confuse human predators, perhaps by producing the illusions described above. As motion perception seems to be highly conserved across a wide range of populations, these illusions may occur for many other predators too.
If we find that patterns other than stripes 鈥 such as speckles, splotches or zigzags 鈥 are most effective in preventing capture, this then leads to new and interesting questions about how these patterns may act to confuse or mislead. Whatever the outcome, Dazzle Bug will provide insight into how bodily patterns may have evolved to help animals to survive life on the go.
, Research Fellow,
This article was originally published on . Read the .
探花直播opinions expressed in this article are those of the individual author(s) and do not represent the views of the 探花直播 of Cambridge.
探花直播text in this work is licensed under a . For image use please see separate credits above.